issues
12 rows where state = "closed" and user = 1312546 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1038531231 | PR_kwDOAMm_X84tzEEk | 5906 | Avoid accessing slow .data in unstack | TomAugspurger 1312546 | closed | 0 | 4 | 2021-10-28T13:39:36Z | 2021-10-29T15:29:39Z | 2021-10-29T15:14:43Z | MEMBER | 0 | pydata/xarray/pulls/5906 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5906/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1037894157 | I_kwDOAMm_X8493QIN | 5902 | Slow performance of `DataArray.unstack()` from checking `variable.data` | TomAugspurger 1312546 | closed | 0 | 4 | 2021-10-27T21:54:48Z | 2021-10-29T15:21:24Z | 2021-10-29T15:21:24Z | MEMBER | What happened: Calling What you expected to happen: Faster unstack. Minimal Complete Verifiable Example: ```python import pandas as pd import numpy as np import xarray as xr t = pd.date_range("2000", periods=2) x = np.arange(1000) y = np.arange(1000) component = np.arange(4) idx = pd.MultiIndex.from_product([t, y, x], names=["time", "y", "x"]) data = np.random.uniform(size=(len(idx), len(component))) arr = xr.DataArray( data, coords={"pixel": xr.DataArray(idx, name="pixel", dims="pixel"), "component": xr.DataArray(component, name="component", dims="component")}, dims=("pixel", "component") ) %time _ = arr.unstack() CPU times: user 6.33 s, sys: 295 ms, total: 6.62 s Wall time: 6.62 s ``` Anything else we need to know?: For this example, >99% of the time is spent at on this line: https://github.com/pydata/xarray/blob/df7646182b17d829fe9b2199aebf649ddb2ed480/xarray/core/dataset.py#L4162, specifically on the call to Just going by the comments, it does seem like accessing Alternatively, if that's too difficult, perhaps we could add a flag to Environment: Output of <tt>xr.show_versions()</tt>``` INSTALLED VERSIONS ------------------ commit: None python: 3.8.12 | packaged by conda-forge | (default, Sep 29 2021, 19:52:28) [GCC 9.4.0] python-bits: 64 OS: Linux OS-release: 5.4.0-1040-azure machine: x86_64 processor: x86_64 byteorder: little LC_ALL: C.UTF-8 LANG: C.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.12.1 libnetcdf: 4.8.1 xarray: 0.19.0 pandas: 1.3.3 numpy: 1.20.0 scipy: 1.7.1 netCDF4: 1.5.7 pydap: installed h5netcdf: 0.11.0 h5py: 3.4.0 Nio: None zarr: 2.10.1 cftime: 1.5.1 nc_time_axis: 1.3.1 PseudoNetCDF: None rasterio: 1.2.9 cfgrib: 0.9.9.0 iris: None bottleneck: 1.3.2 dask: 2021.08.1 distributed: 2021.08.1 matplotlib: 3.4.3 cartopy: 0.20.0 seaborn: 0.11.2 numbagg: None pint: 0.17 setuptools: 58.0.4 pip: 20.3.4 conda: None pytest: None IPython: 7.28.0 sphinx: None ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5902/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
857301324 | MDU6SXNzdWU4NTczMDEzMjQ= | 5151 | DataArray.mean() emits warning with Dask, not NumPy | TomAugspurger 1312546 | closed | 0 | 3 | 2021-04-13T20:34:56Z | 2021-09-15T16:41:43Z | 2021-09-15T16:41:43Z | MEMBER | What happened: When calling DataArray.mean on an all-NaN dataset, a warning is emitted if and only if a Dask array is used. What you expected to happen: Identical behavior between the two, probably no warning . Minimal Complete Verifiable Example: ```python In [7]: import xarray as xr In [8]: import numpy as np In [9]: import dask.array as da In [10]: import xarray as xr In [11]: a = xr.DataArray(da.from_array(np.full((10, 10), np.nan))) In [12]: a.mean(dim="dim_0").compute() /home/taugspurger/miniconda3/envs/tmp-adlfs/lib/python3.8/site-packages/dask/array/numpy_compat.py:39: RuntimeWarning: invalid value encountered in true_divide x = np.divide(x1, x2, out) Out[12]: <xarray.DataArray 'array-395d894c4e4d4ca165a189736da1f52d' (dim_1: 10)> array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) Dimensions without coordinates: dim_1 In [13]: a.compute().mean(dim="dim_0") Out[13]: <xarray.DataArray 'array-395d894c4e4d4ca165a189736da1f52d' (dim_1: 10)> array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) Dimensions without coordinates: dim_1 ``` Anything else we need to know?: I haven't looked closely at why this is happening (I couldn't immediately find where Environment:
```
INSTALLED VERSIONS
------------------
commit: None
python: 3.8.8 | packaged by conda-forge | (default, Feb 20 2021, 16:22:27)
[GCC 9.3.0]
python-bits: 64
OS: Linux
OS-release: 5.4.72-microsoft-standard-WSL2
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: C.UTF-8
LOCALE: en_US.UTF-8
libhdf5: None
libnetcdf: None
xarray: 0.17.0
pandas: 1.2.4
numpy: 1.20.2
scipy: None
netCDF4: None
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: 2.7.0
cftime: None
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: 2021.04.0
distributed: 2021.04.0
matplotlib: None
cartopy: None
seaborn: None
numbagg: None
pint: None
setuptools: 52.0.0.post20210125
pip: 21.0.1
conda: None
pytest: None
IPython: 7.22.0
sphinx: None
```
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5151/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
770937642 | MDU6SXNzdWU3NzA5Mzc2NDI= | 4708 | Potentially spurious warning in rechunk | TomAugspurger 1312546 | closed | 0 | 0 | 2020-12-18T14:37:32Z | 2020-12-24T11:32:43Z | 2020-12-24T11:32:43Z | MEMBER | What happened: When reading an zarr dataset where the last chunk is smaller than the chunk size, users see a What you expected to happen: No warning. Minimal Complete Verifiable Example: ```python Create and write the dataimport numpy as np import pandas as pd import xarray as xr np.random.seed(0) temperature = 15 + 8 * np.random.randn(2, 2, 3) precipitation = 10 * np.random.rand(2, 2, 3) lon = [[-99.83, -99.32], [-99.79, -99.23]] lat = [[42.25, 42.21], [42.63, 42.59]] time = pd.date_range("2014-09-06", periods=3) reference_time = pd.Timestamp("2014-09-05") ds = xr.Dataset( data_vars=dict( temperature=(["x", "y", "time"], temperature), precipitation=(["x", "y", "time"], precipitation), ), coords=dict( lon=(["x", "y"], lon), lat=(["x", "y"], lat), time=time, reference_time=reference_time, ), attrs=dict(description="Weather related data."), ) ds2 = ds.chunk(chunks=dict(time=(2, 1))) ds2['temperature'].chunks ds2.to_zarr("/tmp/test.zarr", mode="w") ``` Reading it produces a warning
Anything else we need to know?: The check around https://github.com/pydata/xarray/blob/91318d2ee63149669404489be9198f230d877642/xarray/core/dataset.py#L371-L378 should probably ignore the very last chunk, since Zarr allows it to be different? Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.8.6 | packaged by conda-forge | (default, Oct 7 2020, 19:08:05) [GCC 7.5.0] python-bits: 64 OS: Linux OS-release: 4.19.128-microsoft-standard machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: C.UTF-8 LOCALE: en_US.UTF-8 libhdf5: None libnetcdf: None xarray: 0.16.3.dev21+g96e1aea0 pandas: 1.1.4 numpy: 1.19.4 scipy: 1.5.4 netCDF4: None pydap: None h5netcdf: None h5py: None Nio: None zarr: 2.6.2.dev9+dirty cftime: 1.3.0 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2.30.0 distributed: None matplotlib: None cartopy: None seaborn: None numbagg: None pint: None setuptools: 49.6.0.post20201009 pip: 20.2.4 conda: None pytest: 5.4.3 IPython: 7.19.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4708/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
704668670 | MDExOlB1bGxSZXF1ZXN0NDg5NTQ5MzIx | 4438 | Fixed dask.optimize on datasets | TomAugspurger 1312546 | closed | 0 | 3 | 2020-09-18T21:30:17Z | 2020-09-20T05:21:58Z | 2020-09-20T05:21:58Z | MEMBER | 0 | pydata/xarray/pulls/4438 | Another attempt to fix #3698. The issue with my fix in is that we hit
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4438/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
703881154 | MDExOlB1bGxSZXF1ZXN0NDg4OTA4MTI5 | 4432 | Fix optimize for chunked DataArray | TomAugspurger 1312546 | closed | 0 | 8 | 2020-09-17T20:16:08Z | 2020-09-18T13:20:45Z | 2020-09-17T23:19:23Z | MEMBER | 0 | pydata/xarray/pulls/4432 | Previously we generated in invalidate Dask task graph, becuase the lines removed here dropped keys that were referenced elsewhere in the task graph. The original implementation had a comment indicating that this was to cull: https://github.com/pydata/xarray/blob/502a988ad5b87b9f3aeec3033bf55c71272e1053/xarray/core/variable.py#L384 Just spot-checking things, I think we're OK here though. Something like
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4432/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
672281867 | MDExOlB1bGxSZXF1ZXN0NDYyMzQ2NzE4 | 4305 | Fix map_blocks examples | TomAugspurger 1312546 | closed | 0 | 5 | 2020-08-03T19:06:58Z | 2020-08-04T07:27:08Z | 2020-08-04T03:38:51Z | MEMBER | 0 | pydata/xarray/pulls/4305 | The examples on master raised with
This PR updates the example to include the |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4305/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
672195744 | MDExOlB1bGxSZXF1ZXN0NDYyMjc2NDEw | 4303 | Update map_blocks and map_overlap docstrings | TomAugspurger 1312546 | closed | 0 | 1 | 2020-08-03T16:27:45Z | 2020-08-03T18:35:43Z | 2020-08-03T18:06:10Z | MEMBER | 0 | pydata/xarray/pulls/4303 | This reference an |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4303/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
533555794 | MDExOlB1bGxSZXF1ZXN0MzQ5NjA5NDM3 | 3598 | Fix map_blocks HLG layering | TomAugspurger 1312546 | closed | 0 | 2 | 2019-12-05T19:41:23Z | 2019-12-07T04:30:19Z | 2019-12-07T04:30:19Z | MEMBER | 0 | pydata/xarray/pulls/3598 | [x] closes #3599 This fixes an issue with the HighLevelGraph noted in https://github.com/pydata/xarray/pull/3584, and exposed by a recent change in Dask to do more HLG fusion. cc @dcherian. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3598/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
400997415 | MDExOlB1bGxSZXF1ZXN0MjQ2MDQ4MDcx | 2693 | Update asv.conf.json | TomAugspurger 1312546 | closed | 0 | 1 | 2019-01-19T13:45:51Z | 2019-01-19T19:42:48Z | 2019-01-19T17:45:20Z | MEMBER | 0 | pydata/xarray/pulls/2693 | Is xarray 3.5+ now? Congrats, I didn't realize that. This started failing the benchmark machine, which I was tending to last night. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2693/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
279161550 | MDU6SXNzdWUyNzkxNjE1NTA= | 1759 | dask compute on reduction failes with ValueError | TomAugspurger 1312546 | closed | 0 | 17 | 2017-12-04T21:45:41Z | 2017-12-07T22:09:18Z | 2017-12-07T22:09:18Z | MEMBER | I'm doing a reduction like ```python In [3]: from dask import compute ...: import numpy as np ...: import xarray as xr ...: In [4]: data = xr.DataArray(np.random.random(size=(10, 2)), ...: dims=['samples', 'features']).chunk((5, 2)) ...: In [5]: compute(data.mean(axis=0)) ``` ```pytbValueError Traceback (most recent call last) <ipython-input-5-47605102585c> in <module>() ----> 1 compute(data.mean(axis=0)) ~/Envs/dask-dev/lib/python3.6/site-packages/dask/dask/base.py in compute(args, kwargs) 334 results_iter = iter(results) 335 return tuple(a if f is None else f(next(results_iter), a) --> 336 for f, a in postcomputes) 337 338 ~/Envs/dask-dev/lib/python3.6/site-packages/dask/dask/base.py in <genexpr>(.0) 334 results_iter = iter(results) 335 return tuple(a if f is None else f(next(results_iter), *a) --> 336 for f, a in postcomputes) 337 338 ~/Envs/dask-dev/lib/python3.6/site-packages/xarray/xarray/core/dataarray.py in _dask_finalize(results, func, args, name) 607 @staticmethod 608 def _dask_finalize(results, func, args, name): --> 609 ds = func(results, *args) 610 variable = ds._variables.pop(_THIS_ARRAY) 611 coords = ds._variables ~/Envs/dask-dev/lib/python3.6/site-packages/xarray/xarray/core/dataset.py in _dask_postcompute(results, info, args) 551 func, args2 = v 552 r = results2.pop() --> 553 result = func(r, args2) 554 else: 555 result = v ~/Envs/dask-dev/lib/python3.6/site-packages/xarray/xarray/core/variable.py in _dask_finalize(results, array_func, array_args, dims, attrs, encoding) 389 results = {k: v for k, v in results.items() if k[0] == name} # cull 390 data = array_func(results, *array_args) --> 391 return Variable(dims, data, attrs=attrs, encoding=encoding) 392 393 @property ~/Envs/dask-dev/lib/python3.6/site-packages/xarray/xarray/core/variable.py in init(self, dims, data, attrs, encoding, fastpath) 267 """ 268 self._data = as_compatible_data(data, fastpath=fastpath) --> 269 self._dims = self._parse_dimensions(dims) 270 self._attrs = None 271 self._encoding = None ~/Envs/dask-dev/lib/python3.6/site-packages/xarray/xarray/core/variable.py in _parse_dimensions(self, dims) 431 raise ValueError('dimensions %s must have the same length as the ' 432 'number of data dimensions, ndim=%s' --> 433 % (dims, self.ndim)) 434 return dims 435 ValueError: dimensions ('features',) must have the same length as the number of data dimensions, ndim=0 ``` The expected output is the
```
In [6]: xr.show_versions()
INSTALLED VERSIONS
------------------
commit: c2b205f29467a4431baa80b5c07fe31bda67fbef
python: 3.6.1.final.0
python-bits: 64
OS: Darwin
OS-release: 16.7.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
xarray: 0.10.0-5-gc2b205f
pandas: 0.22.0.dev0+118.g4c6387520
numpy: 1.14.0.dev0+2995e6a
scipy: 1.1.0.dev0+b6fd544
netCDF4: 1.3.1
h5netcdf: None
Nio: None
bottleneck: None
cyordereddict: None
dask: 0.16.0+15.gcbc62fbef
matplotlib: 2.1.0
cartopy: None
seaborn: 0.8.1
setuptools: 36.7.2
pip: 10.0.0.dev0
conda: None
pytest: 3.2.3
IPython: 6.2.1
sphinx: 1.6.5
```
Apologies if I'm doing something silly here, I don't know xarray :) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1759/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
251773472 | MDExOlB1bGxSZXF1ZXN0MTM2ODQ1MjE2 | 1515 | Added show_commit_url to asv.conf | TomAugspurger 1312546 | closed | 0 | 0 | 2017-08-21T21:17:10Z | 2017-08-23T16:01:50Z | 2017-08-23T16:01:50Z | MEMBER | 0 | pydata/xarray/pulls/1515 | This should setup the proper links from the published output to the commit on Github. FYI the benchmarks should be running stably now, and posted to http://pandas.pydata.org/speed/xarray. http://pandas.pydata.org/speed/xarray/regressions.xml has an RSS feed to the regressions. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1515/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);