issues
34 rows where state = "closed", "updated_at" is on date 2022-08-12 and user = 14371165 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, draft, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1128356864 | PR_kwDOAMm_X84ySpaM | 6257 | Run pyupgrade on core/weighted | Illviljan 14371165 | closed | 0 | 2 | 2022-02-09T10:38:06Z | 2022-08-12T09:08:47Z | 2022-02-09T12:52:39Z | MEMBER | 0 | pydata/xarray/pulls/6257 | Clean up a little in preparation for #6059.
xref: #6244 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6257/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1124884287 | PR_kwDOAMm_X84yHhLI | 6240 | Run pyupgrade on core/utils | Illviljan 14371165 | closed | 0 | 6 | 2022-02-05T09:39:48Z | 2022-08-12T09:08:36Z | 2022-02-05T21:29:37Z | MEMBER | 0 | pydata/xarray/pulls/6240 | Make #6239 cleaner by running pyupgrade separately. pyupgrade fixes typing only if xref: #6244 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6240/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1124879701 | PR_kwDOAMm_X84yHgUf | 6239 | Type NDArrayMixin | Illviljan 14371165 | closed | 0 | 5 | 2022-02-05T09:15:34Z | 2022-08-12T09:08:32Z | 2022-08-12T09:08:32Z | MEMBER | 1 | pydata/xarray/pulls/6239 | Activate typing on these mixins by removing the Any.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6239/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1052952145 | PR_kwDOAMm_X84uf1L8 | 5988 | Check for py version instead of try/except when importing entry_points | Illviljan 14371165 | closed | 0 | 1 | 2021-11-14T14:23:18Z | 2022-08-12T09:08:25Z | 2021-11-14T20:16:57Z | MEMBER | 0 | pydata/xarray/pulls/5988 | This removes the need for the |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5988/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1052888529 | PR_kwDOAMm_X84ufplh | 5986 | Use set_options for asv bottleneck tests | Illviljan 14371165 | closed | 0 | 2 | 2021-11-14T09:10:38Z | 2022-08-12T09:07:55Z | 2021-11-15T20:40:38Z | MEMBER | 0 | pydata/xarray/pulls/5986 | Inspired by #5734, remove the non-bottleneck build and instead use
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5986/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
957439114 | MDExOlB1bGxSZXF1ZXN0NzAwODY1NDE3 | 5662 | Limit and format number of displayed dimensions in repr | Illviljan 14371165 | closed | 0 | 11 | 2021-08-01T09:12:24Z | 2022-08-12T09:07:49Z | 2022-01-03T17:38:49Z | MEMBER | 0 | pydata/xarray/pulls/5662 | When there's a lot of dims, create a new line and continue printing. If there's even more dims that even a few rows can't display them all then limit the number of dims displayed in similar fashion to coordinates. Questions:
* Where should this be used? Datasets, dataarrays, dimensions without coords?
* Should
Test case: ```python import numpy as np import xarray as xr A few dims with long names:a = np.arange(0, 24) data_vars = dict() for i in a: data_vars[f"long_variable_name_{i}"] = xr.DataArray( name=f"long_variable_name_{i}", data=np.arange(0, 20), dims=[f"long_coord_name_{i}x"], coords={f"long_coord_name{i}x": np.arange(0, 20) * 2}, ) ds0 = xr.Dataset(data_vars) ds0.attrs = {f"attr{k}": 2 for k in a} print(ds0) <xarray.Dataset> Dimensions: (long_coord_name_0_x: 20, long_coord_name_10_x: 20, long_coord_name_11_x: 20, long_coord_name_12_x: 20, long_coord_name_13_x: 20, long_coord_name_14_x: 20, long_coord_name_15_x: 20, long_coord_name_16_x: 20, long_coord_name_17_x: 20, long_coord_name_18_x: 20, long_coord_name_19_x: 20, long_coord_name_1_x: 20, long_coord_name_20_x: 20, long_coord_name_21_x: 20, long_coord_name_22_x: 20, long_coord_name_23_x: 20, long_coord_name_2_x: 20, long_coord_name_3_x: 20, long_coord_name_4_x: 20, long_coord_name_5_x: 20, long_coord_name_6_x: 20, long_coord_name_7_x: 20, long_coord_name_8_x: 20, long_coord_name_9_x: 20) Coordinates: (12/24) * long_coord_name_0_x (long_coord_name_0_x) int32 0 2 4 6 8 ... 32 34 36 38 * long_coord_name_1_x (long_coord_name_1_x) int32 0 2 4 6 8 ... 32 34 36 38 * long_coord_name_2_x (long_coord_name_2_x) int32 0 2 4 6 8 ... 32 34 36 38 * long_coord_name_3_x (long_coord_name_3_x) int32 0 2 4 6 8 ... 32 34 36 38 * long_coord_name_4_x (long_coord_name_4_x) int32 0 2 4 6 8 ... 32 34 36 38 * long_coord_name_5_x (long_coord_name_5_x) int32 0 2 4 6 8 ... 32 34 36 38 ... * long_coord_name_18_x (long_coord_name_18_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_19_x (long_coord_name_19_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_20_x (long_coord_name_20_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_21_x (long_coord_name_21_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_22_x (long_coord_name_22_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_23_x (long_coord_name_23_x) int32 0 2 4 6 ... 32 34 36 38 Data variables: (12/24) long_variable_name_0 (long_coord_name_0_x) int32 0 1 2 3 4 ... 16 17 18 19 long_variable_name_1 (long_coord_name_1_x) int32 0 1 2 3 4 ... 16 17 18 19 long_variable_name_2 (long_coord_name_2_x) int32 0 1 2 3 4 ... 16 17 18 19 long_variable_name_3 (long_coord_name_3_x) int32 0 1 2 3 4 ... 16 17 18 19 long_variable_name_4 (long_coord_name_4_x) int32 0 1 2 3 4 ... 16 17 18 19 long_variable_name_5 (long_coord_name_5_x) int32 0 1 2 3 4 ... 16 17 18 19 ... long_variable_name_18 (long_coord_name_18_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_19 (long_coord_name_19_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_20 (long_coord_name_20_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_21 (long_coord_name_21_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_22 (long_coord_name_22_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_23 (long_coord_name_23_x) int32 0 1 2 3 ... 16 17 18 19 Attributes: (12/24) attr_0: 2 attr_1: 2 attr_2: 2 attr_3: 2 attr_4: 2 attr_5: 2 ... attr_18: 2 attr_19: 2 attr_20: 2 attr_21: 2 attr_22: 2 attr_23: 2 ``` ```python Many dims with long names:a = np.arange(0, 200) data_vars = dict() for i in a: data_vars[f"long_variable_name_{i}"] = xr.DataArray( name=f"long_variable_name_{i}", data=np.arange(0, 20), dims=[f"long_coord_name_{i}x"], coords={f"long_coord_name{i}x": np.arange(0, 20) * 2}, ) ds1 = xr.Dataset(data_vars) ds1.attrs = {f"attr{k}": 2 for k in a} print(ds1) <xarray.Dataset> Dimensions: (long_coord_name_0_x: 20, long_coord_name_100_x: 20, long_coord_name_101_x: 20, long_coord_name_102_x: 20, long_coord_name_103_x: 20, long_coord_name_104_x: 20, ... long_coord_name_94_x: 20, long_coord_name_95_x: 20, long_coord_name_96_x: 20, long_coord_name_97_x: 20, long_coord_name_98_x: 20, long_coord_name_99_x: 20, long_coord_name_9_x: 20) Coordinates: (12/200) * long_coord_name_0_x (long_coord_name_0_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_1_x (long_coord_name_1_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_2_x (long_coord_name_2_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_3_x (long_coord_name_3_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_4_x (long_coord_name_4_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_5_x (long_coord_name_5_x) int32 0 2 4 6 ... 32 34 36 38 ... * long_coord_name_194_x (long_coord_name_194_x) int32 0 2 4 6 ... 34 36 38 * long_coord_name_195_x (long_coord_name_195_x) int32 0 2 4 6 ... 34 36 38 * long_coord_name_196_x (long_coord_name_196_x) int32 0 2 4 6 ... 34 36 38 * long_coord_name_197_x (long_coord_name_197_x) int32 0 2 4 6 ... 34 36 38 * long_coord_name_198_x (long_coord_name_198_x) int32 0 2 4 6 ... 34 36 38 * long_coord_name_199_x (long_coord_name_199_x) int32 0 2 4 6 ... 34 36 38 Data variables: (12/200) long_variable_name_0 (long_coord_name_0_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_1 (long_coord_name_1_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_2 (long_coord_name_2_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_3 (long_coord_name_3_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_4 (long_coord_name_4_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_5 (long_coord_name_5_x) int32 0 1 2 3 ... 16 17 18 19 ... long_variable_name_194 (long_coord_name_194_x) int32 0 1 2 3 ... 17 18 19 long_variable_name_195 (long_coord_name_195_x) int32 0 1 2 3 ... 17 18 19 long_variable_name_196 (long_coord_name_196_x) int32 0 1 2 3 ... 17 18 19 long_variable_name_197 (long_coord_name_197_x) int32 0 1 2 3 ... 17 18 19 long_variable_name_198 (long_coord_name_198_x) int32 0 1 2 3 ... 17 18 19 long_variable_name_199 (long_coord_name_199_x) int32 0 1 2 3 ... 17 18 19 Attributes: (12/200) attr_0: 2 attr_1: 2 attr_2: 2 attr_3: 2 attr_4: 2 attr_5: 2 ... attr_194: 2 attr_195: 2 attr_196: 2 attr_197: 2 attr_198: 2 attr_199: 2 ``` ```python Many dims with short names:data_vars = dict() for i in a: data_vars[f"n_{i}"] = xr.DataArray( name=f"n_{i}", data=np.arange(0, 20), dims=[f"{i}x"], coords={f"{i}_x": np.arange(0, 20) * 2}, ) ds2 = xr.Dataset(data_vars) ds2.attrs = {f"attr{k}": 2 for k in a} print(ds2) <xarray.Dataset> Dimensions: (0_x: 20, 100_x: 20, 101_x: 20, 102_x: 20, 103_x: 20, 104_x: 20, 105_x: 20, 106_x: 20, 107_x: 20, 108_x: 20, 109_x: 20, 10_x: 20, 110_x: 20, 111_x: 20, 112_x: 20, 113_x: 20, 114_x: 20, 115_x: 20, 116_x: 20, 117_x: 20, 118_x: 20, 119_x: 20, 11_x: 20, 120_x: 20, 121_x: 20, 122_x: 20, 123_x: 20, 124_x: 20, 125_x: 20, 126_x: 20, 127_x: 20, 128_x: 20, 129_x: 20, 12_x: 20, 130_x: 20, 131_x: 20, ... 71_x: 20, 72_x: 20, 73_x: 20, 74_x: 20, 75_x: 20, 76_x: 20, 77_x: 20, 78_x: 20, 79_x: 20, 7_x: 20, 80_x: 20, 81_x: 20, 82_x: 20, 83_x: 20, 84_x: 20, 85_x: 20, 86_x: 20, 87_x: 20, 88_x: 20, 89_x: 20, 8_x: 20, 90_x: 20, 91_x: 20, 92_x: 20, 93_x: 20, 94_x: 20, 95_x: 20, 96_x: 20, 97_x: 20, 98_x: 20, 99_x: 20, 9_x: 20) Coordinates: (12/200) * 0_x (0_x) int32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 * 1_x (1_x) int32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 * 2_x (2_x) int32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 * 3_x (3_x) int32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 * 4_x (4_x) int32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 * 5_x (5_x) int32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 ... * 194_x (194_x) int32 0 2 4 6 8 10 12 14 16 ... 22 24 26 28 30 32 34 36 38 * 195_x (195_x) int32 0 2 4 6 8 10 12 14 16 ... 22 24 26 28 30 32 34 36 38 * 196_x (196_x) int32 0 2 4 6 8 10 12 14 16 ... 22 24 26 28 30 32 34 36 38 * 197_x (197_x) int32 0 2 4 6 8 10 12 14 16 ... 22 24 26 28 30 32 34 36 38 * 198_x (198_x) int32 0 2 4 6 8 10 12 14 16 ... 22 24 26 28 30 32 34 36 38 * 199_x (199_x) int32 0 2 4 6 8 10 12 14 16 ... 22 24 26 28 30 32 34 36 38 Data variables: (12/200) n_0 (0_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_1 (1_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_2 (2_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_3 (3_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_4 (4_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_5 (5_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... n_194 (194_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_195 (195_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_196 (196_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_197 (197_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_198 (198_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_199 (199_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Attributes: (12/200) attr_0: 2 attr_1: 2 attr_2: 2 attr_3: 2 attr_4: 2 attr_5: 2 ... attr_194: 2 attr_195: 2 attr_196: 2 attr_197: 2 attr_198: 2 attr_199: 2 ``` ```python DataArray with many dimensions:dims = {f"dim_{v}": 2 for v in np.arange(12)} a = xr.DataArray( name="LongDataArrayName", data=np.random.randn(*dims.values()), dims=dims.keys(), coords={k: np.arange(v) * (i + 1) for i, (k, v) in enumerate(dims.items())}, ) print(a) <xarray.DataArray 'LongDataArrayName' (dim_0: 2, dim_1: 2, dim_2: 2, dim_3: 2, dim_4: 2, dim_5: 2, dim_6: 2, dim_7: 2, dim_8: 2, dim_9: 2, dim_10: 2, dim_11: 2)> array([[[[[[[[[[[[ 8.28296160e-01, 2.08993090e-01], [ 8.70468836e-01, 8.90423004e-01]],
... [[[ 1.24664897e+00, 1.72548620e+00], [-7.64230130e-02, -7.96243220e-01]],
Coordinates: * dim_0 (dim_0) int32 0 1 * dim_1 (dim_1) int32 0 2 * dim_2 (dim_2) int32 0 3 * dim_3 (dim_3) int32 0 4 * dim_4 (dim_4) int32 0 5 * dim_5 (dim_5) int32 0 6 * dim_6 (dim_6) int32 0 7 * dim_7 (dim_7) int32 0 8 * dim_8 (dim_8) int32 0 9 * dim_9 (dim_9) int32 0 10 * dim_10 (dim_10) int32 0 11 * dim_11 (dim_11) int32 0 12 ``` ```python DataArray with many dimensions but no coords:dims = {f"dim_{v}": 2 for v in np.arange(12)} a = xr.DataArray( name="LongDataArrayName", data=np.random.randn(*dims.values()), dims=dims.keys(), ) print(a) <xarray.DataArray 'LongDataArrayName' (dim_0: 2, dim_1: 2, dim_2: 2, dim_3: 2, dim_4: 2, dim_5: 2, dim_6: 2, dim_7: 2, dim_8: 2, dim_9: 2, dim_10: 2, dim_11: 2)> array([[[[[[[[[[[[ 2.53218063e-02, -2.01034380e+00], [ 3.07624042e-01, 1.82085569e-01]],
... [[[-1.11275429e+00, -9.33574221e-01], [ 8.62574702e-01, 1.14185983e+00]],
Dimensions without coordinates: dim_0, dim_1, dim_2, dim_3, dim_4, dim_5, dim_6, dim_7, dim_8, dim_9, dim_10, dim_11 ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5662/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
957432870 | MDExOlB1bGxSZXF1ZXN0NzAwODYwMzY4 | 5661 | Speed up _mapping_repr | Illviljan 14371165 | closed | 0 | 8 | 2021-08-01T08:44:17Z | 2022-08-12T09:07:44Z | 2021-08-02T19:45:16Z | MEMBER | 0 | pydata/xarray/pulls/5661 | Creating a ordered list for filtering purposes using
Test case: ```python import numpy as np import xarray as xr a = np.arange(0, 2000) data_vars = dict() for i in a: data_vars[f"long_variable_name_{i}"] = xr.DataArray( name=f"long_variable_name_{i}", data=np.arange(0, 20), dims=[f"long_coord_name_{i}x"], coords={f"long_coord_name{i}x": np.arange(0, 20) * 2}, ) ds0 = xr.Dataset(data_vars) ds0.attrs = {f"attr{k}": 2 for k in a} ``` Before:
After:
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5661/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
970234731 | MDExOlB1bGxSZXF1ZXN0NzEyMjE0ODU4 | 5703 | Use the same bool validator as other inputs for use_bottleneck in xr.set_options | Illviljan 14371165 | closed | 0 | 2 | 2021-08-13T09:36:03Z | 2022-08-12T09:07:28Z | 2021-08-13T13:41:42Z | MEMBER | 0 | pydata/xarray/pulls/5703 | Minor change to align with other booleans. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5703/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1299275985 | PR_kwDOAMm_X847HxFX | 6764 | Remove generic utils import | Illviljan 14371165 | closed | 0 | 0 | 2022-07-08T17:22:26Z | 2022-08-12T09:07:23Z | 2022-07-08T17:52:50Z | MEMBER | 0 | pydata/xarray/pulls/6764 | Some minor import oddities I noticed while reading the code. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6764/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1299306810 | PR_kwDOAMm_X847H3r8 | 6765 | Use `math` instead of `numpy` in some places | Illviljan 14371165 | closed | 0 | 0 | 2022-07-08T18:02:33Z | 2022-08-12T09:07:12Z | 2022-07-09T07:51:15Z | MEMBER | 0 | pydata/xarray/pulls/6765 | Use Example: ```python %timeit math.prod((1, 2, 3)) 161 ns ± 10.5 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each) %timeit int(np.prod((1, 2, 3))) 11.9 µs ± 248 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6765/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1098439498 | PR_kwDOAMm_X84wwv5V | 6150 | Faster dask unstack | Illviljan 14371165 | closed | 0 | 2 | 2022-01-10T22:10:45Z | 2022-08-12T09:07:07Z | 2022-08-12T09:07:06Z | MEMBER | 1 | pydata/xarray/pulls/6150 | ref #5582
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6150/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1099631638 | PR_kwDOAMm_X84w0pGe | 6159 | Import Literal from typing instead of typing_extensions | Illviljan 14371165 | closed | 0 | 1 | 2022-01-11T21:26:59Z | 2022-08-12T09:06:58Z | 2022-01-11T21:59:16Z | MEMBER | 0 | pydata/xarray/pulls/6159 | Small edit to #6121. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6159/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1299416254 | PR_kwDOAMm_X847IPRb | 6767 | Type `shape` methods | Illviljan 14371165 | closed | 0 | 0 | 2022-07-08T20:23:59Z | 2022-08-12T09:06:53Z | 2022-07-09T07:51:28Z | MEMBER | 0 | pydata/xarray/pulls/6767 | The shape methods can have multiple integers inside the tuple, this fixes that and adds to typing to all shape methods I found. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6767/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
996352280 | PR_kwDOAMm_X84rv1Fo | 5794 | Single matplotlib import | Illviljan 14371165 | closed | 0 | 7 | 2021-09-14T19:15:12Z | 2022-08-12T09:06:30Z | 2021-10-24T09:54:28Z | MEMBER | 0 | pydata/xarray/pulls/5794 | Reduce number of imports inside functions. I think it helps making the code easier to read as well, as now you know that
Seems to not be a major difference in initial imports from (my small sample of) repeated tests: This branch: ```python %timeit -n1 -r1 import xarray 3.81 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.83 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.87 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.7 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.77 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.91 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.8 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) np.mean([3.81, 3.83, 3.87, 3.7, 3.77, 3.91, 3.8]) Out[3]: 3.812857142857143 ``` Main: ```python %timeit -n1 -r1 import xarray 3.93 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.69 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.64 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.76 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.79 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.81 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.68 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) np.mean([3.93, 3.69, 3.64, 3.76, 3.79, 3.81, 3.68]) Out[4]: 3.7571428571428567 ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5794/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
970208539 | MDExOlB1bGxSZXF1ZXN0NzEyMTkxODEx | 5702 | Move docstring for xr.set_options to numpy style | Illviljan 14371165 | closed | 0 | 2 | 2021-08-13T09:05:56Z | 2022-08-12T09:06:23Z | 2021-08-19T22:27:39Z | MEMBER | 0 | pydata/xarray/pulls/5702 | While trying to figure out which types are allowed in #5678 I felt that the |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5702/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1110829504 | PR_kwDOAMm_X84xZwqu | 6184 | Add seed kwarg to the tutorial scatter dataset | Illviljan 14371165 | closed | 0 | 2 | 2022-01-21T19:38:53Z | 2022-08-12T09:06:13Z | 2022-01-26T19:04:02Z | MEMBER | 0 | pydata/xarray/pulls/6184 | Allow controlling the randomness of the dataset. It's difficult to catch issues with the dataset if it always changes each run. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6184/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1171424128 | PR_kwDOAMm_X840jZCq | 6371 | Remove test_rasterio_vrt_network | Illviljan 14371165 | closed | 0 | 1 | 2022-03-16T18:49:29Z | 2022-08-12T09:06:02Z | 2022-03-17T06:25:22Z | MEMBER | 0 | pydata/xarray/pulls/6371 | This test has been failing with a 404 error for a while. Remove the test because a lot of the functionality is implemented in rioxarray.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6371/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1034329171 | PR_kwDOAMm_X84tlgQ1 | 5892 | Drop support for python 3.7 | Illviljan 14371165 | closed | 0 | 14 | 2021-10-24T05:32:10Z | 2022-08-12T09:05:56Z | 2022-01-11T21:22:46Z | MEMBER | 0 | pydata/xarray/pulls/5892 | This PR drops support for python 3.7 and removes a bit of compatibility code related to typing.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5892/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1035496539 | PR_kwDOAMm_X84tpNcv | 5896 | Use importlib.resources to load files | Illviljan 14371165 | closed | 0 | 3 | 2021-10-25T19:32:30Z | 2022-08-12T09:05:51Z | 2021-10-25T21:18:18Z | MEMBER | 1 | pydata/xarray/pulls/5896 | Following: https://importlib-resources.readthedocs.io/en/latest/migration.html#pkg-resources-resource-string
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5896/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1088740466 | PR_kwDOAMm_X84wR4bX | 6109 | Remove registration of pandas datetime converter in plotting | Illviljan 14371165 | closed | 0 | 0 | 2021-12-26T10:14:47Z | 2022-08-12T09:05:45Z | 2022-01-09T20:33:29Z | MEMBER | 0 | pydata/xarray/pulls/6109 | Back in 2017 the da = xarray.DataArray( numpy.arange(3*4).reshape(3,4), dims=("x", "y"), coords={"x": [1,2,3], "y": [numpy.datetime64(f"2000-01-{x:02d}") for x in range(1, 5)]}) da.plot.pcolormesh() ``` This has probably been working by default in matplotlib since 2.2.0, when datetime support was added https://github.com/matplotlib/matplotlib/releases/tag/v2.2.0. (https://github.com/matplotlib/matplotlib/pull/9779) Related issues: https://github.com/mwaskom/seaborn/issues/1325
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6109/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1167394407 | PR_kwDOAMm_X840WQW1 | 6351 | Run pyupgrade on core/groupby | Illviljan 14371165 | closed | 0 | 1 | 2022-03-12T20:46:15Z | 2022-08-12T09:05:37Z | 2022-03-13T04:21:54Z | MEMBER | 0 | pydata/xarray/pulls/6351 | Minor touch up looking through #5950.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6351/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1133868003 | PR_kwDOAMm_X84yl7lK | 6270 | Update pyupgrade to py38-plus | Illviljan 14371165 | closed | 0 | 1 | 2022-02-12T10:58:00Z | 2022-08-12T09:05:31Z | 2022-02-12T13:50:31Z | MEMBER | 0 | pydata/xarray/pulls/6270 | xref: #6244 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6270/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1020353782 | PR_kwDOAMm_X84s6KU4 | 5844 | Add python 3.10 to CI | Illviljan 14371165 | closed | 0 | 9 | 2021-10-07T18:49:43Z | 2022-08-12T09:05:25Z | 2022-01-21T17:06:43Z | MEMBER | 0 | pydata/xarray/pulls/5844 | Waiting on * https://github.com/ContinuumIO/anaconda-issues/issues/12669 * https://github.com/conda/conda/pull/10970 * https://github.com/conda-forge/python-feedstock/pull/511 * https://github.com/conda-forge/numba-feedstock/pull/86 * https://github.com/pydap/pydap/pull/210
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5844/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1302560442 | PR_kwDOAMm_X847Snca | 6779 | Move _infer_meta_data and _parse_size to utils | Illviljan 14371165 | closed | 0 | 0 | 2022-07-12T20:01:59Z | 2022-08-12T09:03:53Z | 2022-07-12T20:45:02Z | MEMBER | 0 | pydata/xarray/pulls/6779 | Reduce diffs in #6778. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6779/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
990194656 | MDExOlB1bGxSZXF1ZXN0NzI4ODE5ODk1 | 5772 | Create benchmark for groupby | Illviljan 14371165 | closed | 0 | 6 | 2021-09-07T17:23:50Z | 2022-08-12T09:03:28Z | 2021-09-20T20:15:30Z | MEMBER | 0 | pydata/xarray/pulls/5772 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5772/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1034382021 | PR_kwDOAMm_X84tlqIi | 5893 | Only run asv benchmark when labeled | Illviljan 14371165 | closed | 0 | 1 | 2021-10-24T10:44:17Z | 2022-08-12T09:02:27Z | 2021-10-24T11:35:42Z | MEMBER | 0 | pydata/xarray/pulls/5893 | Small fix to #5796. The benchmark was only intended to run when the PR has the label |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5893/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1325613350 | PR_kwDOAMm_X848fiwZ | 6862 | Add typing to some interval functions | Illviljan 14371165 | closed | 0 | 0 | 2022-08-02T10:02:57Z | 2022-08-12T09:02:21Z | 2022-08-02T20:43:08Z | MEMBER | 0 | pydata/xarray/pulls/6862 | Reduce diffs in #6778. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6862/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1318779952 | PR_kwDOAMm_X848I_BC | 6832 | Convert name to string in label_from_attrs | Illviljan 14371165 | closed | 0 | 2 | 2022-07-26T21:40:38Z | 2022-08-12T09:02:01Z | 2022-07-26T22:48:39Z | MEMBER | 0 | pydata/xarray/pulls/6832 | Make sure name is a string. Use the same
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6832/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1324163858 | PR_kwDOAMm_X848auLe | 6856 | Better error message in _infer_meta_data | Illviljan 14371165 | closed | 0 | 0 | 2022-08-01T10:06:58Z | 2022-08-12T09:01:36Z | 2022-08-01T16:59:51Z | MEMBER | 0 | pydata/xarray/pulls/6856 | Reduce diffs in #6778. I remember finding it annoying that I got a list of the valid strings but not the actual string used. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6856/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
996475523 | PR_kwDOAMm_X84rwPey | 5796 | Add asv benchmark jobs to CI | Illviljan 14371165 | closed | 0 | 16 | 2021-09-14T22:00:49Z | 2022-08-12T09:01:15Z | 2021-10-24T10:08:02Z | MEMBER | 0 | pydata/xarray/pulls/5796 | Workflow based on the version from scikit-image. Modfied to have Notes: * https://github.com/scikit-image/scikit-image doesn't have the same benchmark folder setup, for example config file is in root directory, other folder names. * https://github.com/numpy/numpy has same folder name as sckit-image. config file is in the folder however. References: * https://labs.quansight.org/blog/2021/08/github-actions-benchmarks/ * https://github.com/scikit-image/scikit-image/pull/5424 * https://github.com/jaimergp/scikit-image/pull/1 Tests checked:
TODO: * self.setup_cache
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5796/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 2, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
899015876 | MDExOlB1bGxSZXF1ZXN0NjUwNzg2MDQ1 | 5365 | Add support for cross product | Illviljan 14371165 | closed | 0 | 36 | 2021-05-23T13:03:42Z | 2022-08-12T09:00:21Z | 2021-12-29T07:54:37Z | MEMBER | 0 | pydata/xarray/pulls/5365 | Adds support for the cross product. New tricks possible thanks to xarray: * When coords are defined you can fill with 2 values instead of only 1 like numpy. * When coords are defined you can fill inbetween values as well instead of just appending zeros at the end like numpy.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5365/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1326509734 | PR_kwDOAMm_X848ikDG | 6871 | Handle None in assert_valid_xy | Illviljan 14371165 | closed | 0 | 3 | 2022-08-02T23:37:19Z | 2022-08-12T08:59:59Z | 2022-08-03T22:08:45Z | MEMBER | 0 | pydata/xarray/pulls/6871 | Reduce diffs in #6778.
* Handle mypy noticed that Hashable cannot use |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6871/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1332554764 | PR_kwDOAMm_X8482bc3 | 6898 | Fix mypy CI | Illviljan 14371165 | closed | 0 | 0 | 2022-08-09T00:35:19Z | 2022-08-12T08:59:42Z | 2022-08-09T01:30:24Z | MEMBER | 0 | pydata/xarray/pulls/6898 | Fixes:
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6898/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1332546810 | PR_kwDOAMm_X8482ZvM | 6897 | Type xr.tutorial | Illviljan 14371165 | closed | 0 | 1 | 2022-08-09T00:20:19Z | 2022-08-12T08:59:30Z | 2022-08-10T07:40:18Z | MEMBER | 0 | pydata/xarray/pulls/6897 | Add some typing to the open_dataset functions. Was doing some debugging and I only got |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6897/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);