issues
131 rows where state = "closed", type = "issue" and user = 2448579 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1574694462 | I_kwDOAMm_X85d2-4- | 7513 | intermittent failures with h5netcdf, h5py on macos | dcherian 2448579 | closed | 0 | 5 | 2023-02-07T16:58:43Z | 2024-04-28T23:35:21Z | 2024-04-28T23:35:21Z | MEMBER | What is your issue?cc @hmaarrfk @kmuehlbauer Passed: https://github.com/pydata/xarray/actions/runs/4115923717/jobs/7105298426 Failed: https://github.com/pydata/xarray/actions/runs/4115946392/jobs/7105345290 Versions:
``` =================================== FAILURES =================================== ___ test_open_mfdataset_manyfiles[h5netcdf-20-True-5-5] ______ [gw1] darwin -- Python 3.10.9 /Users/runner/micromamba-root/envs/xarray-tests/bin/python readengine = 'h5netcdf', nfiles = 20, parallel = True, chunks = 5 file_cache_maxsize = 5
/Users/runner/work/xarray/xarray/xarray/tests/test_backends.py:3267: /Users/runner/work/xarray/xarray/xarray/backends/api.py:991: in open_mfdataset datasets, closers = dask.compute(datasets, closers) /Users/runner/micromamba-root/envs/xarray-tests/lib/python3.10/site-packages/dask/base.py:599: in compute results = schedule(dsk, keys, kwargs) /Users/runner/micromamba-root/envs/xarray-tests/lib/python3.10/site-packages/dask/threaded.py:89: in get results = get_async( /Users/runner/micromamba-root/envs/xarray-tests/lib/python3.10/site-packages/dask/local.py:511: in get_async raise_exception(exc, tb) /Users/runner/micromamba-root/envs/xarray-tests/lib/python3.10/site-packages/dask/local.py:319: in reraise raise exc /Users/runner/micromamba-root/envs/xarray-tests/lib/python3.10/site-packages/dask/local.py:224: in execute_task result = _execute_task(task, data) /Users/runner/micromamba-root/envs/xarray-tests/lib/python3.10/site-packages/dask/core.py:119: in _execute_task return func((_execute_task(a, cache) for a in args)) /Users/runner/micromamba-root/envs/xarray-tests/lib/python3.10/site-packages/dask/utils.py:72: in apply return func(args, kwargs) /Users/runner/work/xarray/xarray/xarray/backends/api.py:526: in open_dataset backend_ds = backend.open_dataset( /Users/runner/work/xarray/xarray/xarray/backends/h5netcdf_.py:417: in open_dataset ds = store_entrypoint.open_dataset( /Users/runner/work/xarray/xarray/xarray/backends/store.py:32: in open_dataset vars, attrs = store.load() /Users/runner/work/xarray/xarray/xarray/backends/common.py:129: in load (decode_variable_name(k), v) for k, v in self.get_variables().items() /Users/runner/work/xarray/xarray/xarray/backends/h5netcdf.py:220: in get_variables return FrozenDict( /Users/runner/work/xarray/xarray/xarray/core/utils.py:471: in FrozenDict return Frozen(dict(args, *kwargs)) /Users/runner/work/xarray/xarray/xarray/backends/h5netcdf_.py:221: in <genexpr> (k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items() /Users/runner/work/xarray/xarray/xarray/backends/h5netcdf_.py:200: in open_store_variable elif var.compression is not None: /Users/runner/micromamba-root/envs/xarray-tests/lib/python3.10/site-packages/h5netcdf/core.py:394: in compression return self._h5ds.compression self = <[AttributeError("'NoneType' object has no attribute '_root'") raised in repr()] Variable object at 0x151378970>
``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7513/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
2136709010 | I_kwDOAMm_X85_W5eS | 8753 | Lazy Loading with `DataArray` vs. `Variable` | dcherian 2448579 | closed | 0 | 0 | 2024-02-15T14:42:24Z | 2024-04-04T16:46:54Z | 2024-04-04T16:46:54Z | MEMBER | Discussed in https://github.com/pydata/xarray/discussions/8751
<sup>Originally posted by **ilan-gold** February 15, 2024</sup>
My goal is to get a dataset from [custom io-zarr backend lazy-loaded](https://docs.xarray.dev/en/stable/internals/how-to-add-new-backend.html#how-to-support-lazy-loading). But when I declare a `DataArray` based on the `Variable` which uses `LazilyIndexedArray`, everything is read in. Is this expected? I specifically don't want to have to use dask if possible. I have seen https://github.com/aurghs/xarray-backend-tutorial/blob/main/2.Backend_with_Lazy_Loading.ipynb but it's a little bit different.
While I have a custom backend array inheriting from `ZarrArrayWrapper`, this example using `ZarrArrayWrapper` directly still highlights the same unexpected behavior of everything being read in.
```python
import zarr
import xarray as xr
from tempfile import mkdtemp
import numpy as np
from pathlib import Path
from collections import defaultdict
class AccessTrackingStore(zarr.DirectoryStore):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._access_count = {}
self._accessed = defaultdict(set)
def __getitem__(self, key):
for tracked in self._access_count:
if tracked in key:
self._access_count[tracked] += 1
self._accessed[tracked].add(key)
return super().__getitem__(key)
def get_access_count(self, key):
return self._access_count[key]
def set_key_trackers(self, keys_to_track):
if isinstance(keys_to_track, str):
keys_to_track = [keys_to_track]
for k in keys_to_track:
self._access_count[k] = 0
def get_subkeys_accessed(self, key):
return self._accessed[key]
orig_path = Path(mkdtemp())
z = zarr.group(orig_path / "foo.zarr")
z['array'] = np.random.randn(1000, 1000)
store = AccessTrackingStore(orig_path / "foo.zarr")
store.set_key_trackers(['array'])
z = zarr.group(store)
arr = xr.backends.zarr.ZarrArrayWrapper(z['array'])
lazy_arr = xr.core.indexing.LazilyIndexedArray(arr)
# just `.zarray`
var = xr.Variable(('x', 'y'), lazy_arr)
print('Variable read in ', store.get_subkeys_accessed('array'))
# now everything is read in
da = xr.DataArray(var)
print('DataArray read in ', store.get_subkeys_accessed('array'))
``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8753/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
2066510805 | I_kwDOAMm_X857LHPV | 8589 | Don't overwrite indexes for region writes, always | dcherian 2448579 | closed | 0 | 2 | 2024-01-04T23:52:18Z | 2024-03-27T16:24:37Z | 2024-03-27T16:24:36Z | MEMBER | What happened?Currently we don't overwrite indexes when I propose we do this for all region writes and completely disallow modifying indexes with a region write. This would match the |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8589/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
2188936276 | I_kwDOAMm_X86CeIRU | 8843 | Get ready for pandas 3 copy-on-write | dcherian 2448579 | closed | 0 | 2 | 2024-03-15T15:51:36Z | 2024-03-18T16:00:14Z | 2024-03-18T16:00:14Z | MEMBER | What is your issue?This line fails with We'll need to fix this before Pandas 3 is released in April: https://github.com/pydata/xarray/blob/c9d3084e98d38a7a9488380789a8d0acfde3256f/xarray/tests/init.py#L329 Here's a test ```python def example(): obj = Dataset() obj["dim2"] = ("dim2", 0.5 * np.arange(9)) obj["time"] = ("time", pd.date_range("2000-01-01", periods=20) print({k: v.data.flags for k, v in obj.variables.items()}) return obj example() pd.set_options("mode.copy_on_write", True) example() ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8843/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
2098659703 | I_kwDOAMm_X859FwF3 | 8659 | renaming index variables with `rename_vars` seems buggy | dcherian 2448579 | closed | 0 | 1 | 2024-01-24T16:35:18Z | 2024-03-15T19:21:51Z | 2024-03-15T19:21:51Z | MEMBER | What happened?(xref #8658) I'm not sure what the expected behaviour is here: ```python import xarray as xr import numpy as np from xarray.testing import _assert_internal_invariants ds = xr.Dataset() ds.coords["1"] = ("1", np.array([1], dtype=np.uint32)) ds["1_"] = ("1", np.array([1], dtype=np.uint32)) ds = ds.rename_vars({"1": "0"}) ds ``` It looks like this sequence of operations creates a default index
But then ```python from xarray.testing import _assert_internal_invariants _assert_internal_invariants(ds, check_default_indexes=True)
AssertionError: ({'0'}, set()) ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8659/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
2184871888 | I_kwDOAMm_X86COn_Q | 8830 | failing tests, all envs | dcherian 2448579 | closed | 0 | 1 | 2024-03-13T20:56:34Z | 2024-03-15T04:06:04Z | 2024-03-15T04:06:04Z | MEMBER | What happened?All tests are failing because of an error in
```AssertionError Traceback (most recent call last) Cell In[3], line 2 1 from xarray.tests import create_test_data ----> 2 create_test_data() File ~/repos/xarray/xarray/tests/init.py:329, in create_test_data(seed, add_attrs, dim_sizes) 327 obj.coords["numbers"] = ("dim3", numbers_values) 328 obj.encoding = {"foo": "bar"} --> 329 assert all(var.values.flags.writeable for var in obj.variables.values()) 330 return obj AssertionError: ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8830/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1308371056 | I_kwDOAMm_X85N_Chw | 6806 | New alignment option: "exact" without broadcasting OR Turn off automatic broadcasting | dcherian 2448579 | closed | 0 | 9 | 2022-07-18T18:43:31Z | 2024-03-13T15:36:35Z | 2024-03-13T15:36:35Z | MEMBER | Is your feature request related to a problem?If we have two objects with dims I'd like a stricter option ( Describe the solution you'd like
It'd be nice to have this as a built-in option so we can use
Describe alternatives you've consideredAn alternative would be to allow control over automatic broadcasting through the Additional contextThis turns up in staggered grid calculations with xgcm where it is easy to mistakenly construct very high-dimensional arrays because of automatic broadcasting. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6806/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
2135011804 | I_kwDOAMm_X85_QbHc | 8748 | release v2024.02.0 | dcherian 2448579 | closed | 0 | keewis 14808389 | 0 | 2024-02-14T19:08:38Z | 2024-02-18T22:52:15Z | 2024-02-18T22:52:15Z | MEMBER | What is your issue?Thanks to @keewis for volunteering at today's meeting :() |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8748/reactions", "total_count": 3, "+1": 0, "-1": 0, "laugh": 1, "hooray": 0, "confused": 0, "heart": 2, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | |||||
2064313690 | I_kwDOAMm_X857Cu1a | 8580 | add py3.12 CI and update pyproject.toml | dcherian 2448579 | closed | 0 | 2 | 2024-01-03T16:26:47Z | 2024-01-17T21:54:13Z | 2024-01-17T21:54:13Z | MEMBER | What is your issue?We haven't done this yet! https://github.com/pydata/xarray/blob/d87ba61c957fc3af77251ca6db0f6bccca1acb82/pyproject.toml#L11-L15 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8580/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
2086607437 | I_kwDOAMm_X858XxpN | 8616 | new release 2024.01.0 | dcherian 2448579 | closed | 0 | 0 | 2024-01-17T17:03:20Z | 2024-01-17T19:21:12Z | 2024-01-17T19:21:12Z | MEMBER | What is your issue?Thanks @TomNicholas for volunteering to drive this release! |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8616/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 1, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
2064420057 | I_kwDOAMm_X857DIzZ | 8581 | bump min versions | dcherian 2448579 | closed | 0 | 0 | 2024-01-03T17:45:10Z | 2024-01-05T16:13:16Z | 2024-01-05T16:13:15Z | MEMBER | What is your issue?Looks like we can bump a number of min versions: ``` Package Required Policy Status cartopy 0.20 (2021-09-17) 0.21 (2022-09-10) < dask-core 2022.7 (2022-07-08) 2022.12 (2022-12-02) < distributed 2022.7 (2022-07-08) 2022.12 (2022-12-02) < flox 0.5 (2022-05-03) 0.6 (2022-10-12) < iris 3.2 (2022-02-15) 3.4 (2022-12-01) < matplotlib-base 3.5 (2021-11-18) 3.6 (2022-09-16) < numba 0.55 (2022-01-14) 0.56 (2022-09-28) < numpy 1.22 (2022-01-03) 1.23 (2022-06-23) < packaging 21.3 (2021-11-18) 22.0 (2022-12-08) < pandas 1.4 (2022-01-22) 1.5 (2022-09-19) < scipy 1.8 (2022-02-06) 1.9 (2022-07-30) < seaborn 0.11 (2020-09-08) 0.12 (2022-09-06) < typing_extensions 4.3 (2022-07-01) 4.4 (2022-10-07) < zarr 2.12 (2022-06-23) 2.13 (2022-09-27) < ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8581/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1989588884 | I_kwDOAMm_X852lreU | 8448 | mypy 1.7.0 raising errors | dcherian 2448579 | closed | 0 | 0 | 2023-11-12T21:41:43Z | 2023-12-01T22:02:22Z | 2023-12-01T22:02:22Z | MEMBER | What happened?
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8448/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1615596004 | I_kwDOAMm_X85gTAnk | 7596 | illustrate time offset arithmetic | dcherian 2448579 | closed | 0 | 2 | 2023-03-08T16:54:15Z | 2023-11-29T01:31:45Z | 2023-11-29T01:31:45Z | MEMBER | Is your feature request related to a problem?We should document changing the time vector using pandas date offsets here This is particularly useful for centering the time stamps after a resampling operation. Related:
- CFTime offsets: https://github.com/pydata/xarray/issues/5687
- Describe the solution you'd likeNo response Describe alternatives you've consideredNo response Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7596/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1672288892 | I_kwDOAMm_X85jrRp8 | 7764 | Support opt_einsum in xr.dot | dcherian 2448579 | closed | 0 | 7 | 2023-04-18T03:29:48Z | 2023-10-28T03:31:06Z | 2023-10-28T03:31:06Z | MEMBER | Is your feature request related to a problem?Shall we support opt_einsum as an optional backend for
Describe the solution you'd likeAdd a Describe alternatives you've consideredWe could create a new package but it seems a bit silly. Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7764/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1908084109 | I_kwDOAMm_X85xuw2N | 8223 | release 2023.09.0 | dcherian 2448579 | closed | 0 | 6 | 2023-09-22T02:29:30Z | 2023-09-26T08:12:46Z | 2023-09-26T08:12:46Z | MEMBER | We've accumulated a nice number of changes. Can someone volunteer to do a release in the next few days? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8223/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1175093771 | I_kwDOAMm_X85GCoIL | 6391 | apply_ufunc and Datasets with variables without the core dimension | dcherian 2448579 | closed | 0 | 5 | 2022-03-21T09:13:02Z | 2023-09-17T08:20:15Z | 2023-09-17T08:20:14Z | MEMBER | Is your feature request related to a problem?Consider this example
This raises
because core dimension Describe the solution you'd likeAdd a new kwarg to Describe alternatives you've consideredNo response Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6391/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1874695065 | I_kwDOAMm_X85vvZOZ | 8125 | failing tests with pandas 2.1 | dcherian 2448579 | closed | 0 | 10 | 2023-08-31T02:42:32Z | 2023-09-15T13:12:02Z | 2023-09-15T13:12:02Z | MEMBER | What happened?See https://github.com/pydata/xarray/pull/8101
and this doctest
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8125/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1812504689 | I_kwDOAMm_X85sCKBx | 8006 | Fix documentation about datetime_unit of xarray.DataArray.differentiate | dcherian 2448579 | closed | 0 | 0 | 2023-07-19T18:31:10Z | 2023-09-01T09:37:15Z | 2023-09-01T09:37:15Z | MEMBER | Should say that Discussed in https://github.com/pydata/xarray/discussions/8000
<sup>Originally posted by **jesieleo** July 19, 2023</sup>
I have a piece of data that looks like this
```
<xarray.Dataset>
Dimensions: (time: 612, LEV: 15, latitude: 20, longitude: 357)
Coordinates:
* time (time) datetime64[ns] 1960-01-15 1960-02-15 ... 2010-12-15
* LEV (LEV) float64 5.01 15.07 25.28 35.76 ... 149.0 171.4 197.8 229.5
* latitude (latitude) float64 -4.75 -4.25 -3.75 -3.25 ... 3.75 4.25 4.75
* longitude (longitude) float64 114.2 114.8 115.2 115.8 ... 291.2 291.8 292.2
Data variables:
u (time, LEV, latitude, longitude) float32 ...
Attributes: (12/30)
cdm_data_type: Grid
Conventions: COARDS, CF-1.6, ACDD-1.3
creator_email: chepurin@umd.edu
creator_name: APDRC
creator_type: institution
creator_url: https://www.atmos.umd.edu/~ocean/
... ...
standard_name_vocabulary: CF Standard Name Table v29
summary: Simple Ocean Data Assimilation (SODA) soda po...
time_coverage_end: 2010-12-15T00:00:00Z
time_coverage_start: 1983-01-15T00:00:00Z
title: SODA soda pop2.2.4 [TIME][LEV][LAT][LON]
Westernmost_Easting: 118.25
```
when i try to use xarray.DataArray.differentiate
`data.u.differentiate('time',datetime_unit='M')`
will appear
```
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\Anaconda3\lib\site-packages\xarray\core\dataarray.py", line 3609, in differentiate
ds = self._to_temp_dataset().differentiate(coord, edge_order, datetime_unit)
File "D:\Anaconda3\lib\site-packages\xarray\core\dataset.py", line 6372, in differentiate
coord_var = coord_var._to_numeric(datetime_unit=datetime_unit)
File "D:\Anaconda3\lib\site-packages\xarray\core\variable.py", line 2428, in _to_numeric
numeric_array = duck_array_ops.datetime_to_numeric(
File "D:\Anaconda3\lib\site-packages\xarray\core\duck_array_ops.py", line 466, in datetime_to_numeric
array = array / np.timedelta64(1, datetime_unit)
TypeError: Cannot get a common metadata divisor for Numpy datatime metadata [ns] and [M] because they have incompatible nonlinear base time units.
```
Would you please told me is this a BUG? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8006/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1603957501 | I_kwDOAMm_X85fmnL9 | 7573 | Add optional min versions to conda-forge recipe (`run_constrained`) | dcherian 2448579 | closed | 0 | 4 | 2023-02-28T23:12:15Z | 2023-08-21T16:12:34Z | 2023-08-21T16:12:21Z | MEMBER | Is your feature request related to a problem?I opened this PR to add minimum versions for our optional dependencies: https://github.com/conda-forge/xarray-feedstock/pull/84/files to prevent issues like #7467 I think we'd need a policy to choose which ones to list. Here's the current list:
Some examples to think about:
1. Describe the solution you'd likeNo response Describe alternatives you've consideredNo response Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7573/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1642299599 | I_kwDOAMm_X85h44DP | 7683 | automatically chunk in groupby binary ops | dcherian 2448579 | closed | 0 | 0 | 2023-03-27T15:14:09Z | 2023-07-27T16:41:35Z | 2023-07-27T16:41:34Z | MEMBER | What happened?From https://discourse.pangeo.io/t/xarray-unable-to-allocate-memory-how-to-size-up-problem/3233/4 Consider ``` python ds is dataset with big dask arraysmean = ds.groupby("time.day").mean() mean.to_netcdf() mean = xr.open_dataset(...) ds.groupby("time.day") - mean ``` In we will eagerly construct What did you expect to happen?I think the only solution is to automatically chunk if Minimal Complete Verifiable ExampleNo response MVCE confirmation
Relevant log outputNo response Anything else we need to know?No response Environment |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7683/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1789989152 | I_kwDOAMm_X85qsREg | 7962 | Better chunk manager error | dcherian 2448579 | closed | 0 | 4 | 2023-07-05T17:27:25Z | 2023-07-24T22:26:14Z | 2023-07-24T22:26:13Z | MEMBER | What happened?I just ran in to this error in an environment without dask.
I think we could easily recommend the user to install a package that provides |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7962/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1797636782 | I_kwDOAMm_X85rJcKu | 7976 | Explore updating colormap code | dcherian 2448579 | closed | 0 | 0 | 2023-07-10T21:51:30Z | 2023-07-11T13:49:54Z | 2023-07-11T13:49:53Z | MEMBER | What is your issue?See https://github.com/matplotlib/matplotlib/issues/16296 Looks like the MPL API may have advanced enough that we can delete some of our use of private attributes. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7976/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1692597701 | I_kwDOAMm_X85k4v3F | 7808 | Default behaviour of `min_count` wrong with flox | dcherian 2448579 | closed | 0 | 0 | 2023-05-02T15:04:11Z | 2023-05-10T02:39:45Z | 2023-05-10T02:39:45Z | MEMBER | What happened?```python with xr.set_options(display_style="text", use_flox=False): with xr.set_options(use_flox=False): display( xr.DataArray( data=np.array([np.nan, 1, 1, np.nan, 1, 1]), dims="x", coords={"labels": ("x", np.array([1, 2, 3, 1, 2, 3]))}, ) .groupby("labels") .sum() )
``` ``` without flox<xarray.DataArray (labels: 3)> array([0., 2., 2.]) Coordinates: * labels (labels) int64 1 2 3 with flox<xarray.DataArray (labels: 3)> array([nan, 2., 2.]) Coordinates: * labels (labels) int64 1 2 3 ``` What did you expect to happen?The same answer. We should set Minimal Complete Verifiable ExampleNo response MVCE confirmation
Relevant log outputNo response Anything else we need to know?No response Environment |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7808/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1654022522 | I_kwDOAMm_X85ilmF6 | 7716 | bad conda solve with pandas 2 | dcherian 2448579 | closed | 0 | 18 | 2023-04-04T14:37:58Z | 2023-04-16T17:57:27Z | 2023-04-13T17:56:34Z | MEMBER | What happened?Pandas 2 is out. We have a It looks like any project that tests I opened the issue here for visibility. It seems we might need a repodata patch to disallow cc @ocefpaf What did you expect to happen?No response Minimal Complete Verifiable ExampleNo response MVCE confirmation
Relevant log outputNo response Anything else we need to know?No response Environment |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7716/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1642317716 | I_kwDOAMm_X85h48eU | 7685 | Add welcome bot? | dcherian 2448579 | closed | 0 | 6 | 2023-03-27T15:24:25Z | 2023-04-06T01:55:55Z | 2023-04-06T01:55:55Z | MEMBER | Is your feature request related to a problem?Given all the outreachy interest (and perhaps just in general) it may be nice to enable a welcome bot like on the Jupyter repos Describe the solution you'd likeNo response Describe alternatives you've consideredNo response Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7685/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1409811164 | I_kwDOAMm_X85UCALc | 7162 | copy of custom index does not align with original | dcherian 2448579 | closed | 0 | 7 | 2022-10-14T20:17:22Z | 2023-03-24T20:37:13Z | 2023-03-24T20:37:12Z | MEMBER | What happened?MY prototype CRSIndex is broken on the release version: https://github.com/dcherian/crsindex/blob/main/crsindex.ipynb under heading "BROKEN: Successfully align with a copy of itself" The cell's code is :
which should always work. @headtr1ck is https://github.com/pydata/xarray/pull/7140 to blame? Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.6 | packaged by conda-forge | (main, Aug 22 2022, 20:43:44) [Clang 13.0.1 ]
python-bits: 64
OS: Darwin
OS-release: 21.6.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2022.10.0
pandas: 1.5.0
numpy: 1.23.3
scipy: 1.9.1
netCDF4: 1.6.0
pydap: None
h5netcdf: 1.0.2
h5py: 3.7.0
Nio: None
zarr: 2.13.3
cftime: 1.6.2
nc_time_axis: 1.4.1
PseudoNetCDF: 3.2.2
rasterio: 1.3.2
cfgrib: 0.9.10.2
iris: 3.3.1
bottleneck: 1.3.5
dask: 2022.9.2
distributed: 2022.9.2
matplotlib: 3.6.1
cartopy: 0.21.0
seaborn: 0.12.0
numbagg: 0.2.1
fsspec: 2022.8.2
cupy: None
pint: 0.19.2
sparse: 0.13.0
flox: 0.6.0
numpy_groupies: 0.9.19
setuptools: 65.5.0
pip: 22.2.2
conda: None
pytest: 7.1.3
IPython: 8.5.0
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7162/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
984555353 | MDU6SXNzdWU5ODQ1NTUzNTM= | 5754 | Variable.stack constructs extremely large chunks | dcherian 2448579 | closed | 0 | 6 | 2021-09-01T03:08:02Z | 2023-03-22T14:51:44Z | 2021-12-14T17:31:45Z | MEMBER | Minimal Complete Verifiable Example: Here's a small array with too-small chunk sizes just as an example ```python Put your MCVE code hereimport dask.array import xarray as xr var = xr.Variable(("x", "y", "z"), dask.array.random.random((4, 18483, 1000), chunks=(1, 183, -1)))
```
Now stack two dimensions, this is a 100x increase in chunk size (in my actual code, 85MB chunks become 8.5GB chunks =) )
But calling SolutionAh, found it , we transpose then reshape in Writing those steps with pure dask yields the same 100x increase in chunksize
Anything else we need to know?: Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.8.6 | packaged by conda-forge | (default, Jan 25 2021, 23:21:18) [GCC 9.3.0] python-bits: 64 OS: Linux OS-release: 3.10.0-1127.18.2.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: en_US.UTF-8 LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.19.0 pandas: 1.3.1 numpy: 1.21.1 scipy: 1.5.3 netCDF4: 1.5.6 pydap: installed h5netcdf: 0.11.0 h5py: 3.3.0 Nio: None zarr: 2.8.3 cftime: 1.5.0 nc_time_axis: 1.3.1 PseudoNetCDF: None rasterio: None cfgrib: None iris: 3.0.4 bottleneck: 1.3.2 dask: 2021.07.2 distributed: 2021.07.2 matplotlib: 3.4.2 cartopy: 0.19.0.post1 seaborn: 0.11.1 numbagg: None pint: 0.17 setuptools: 49.6.0.post20210108 pip: 21.2.2 conda: 4.10.3 pytest: 6.2.4 IPython: 7.26.0 sphinx: 4.1.2 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5754/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1530966360 | I_kwDOAMm_X85bQLFY | 7434 | RTD failure on main | dcherian 2448579 | closed | 0 | 2 | 2023-01-12T15:57:55Z | 2023-01-13T17:38:00Z | 2023-01-13T17:38:00Z | MEMBER | What happened?logs
This seems real |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7434/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1284094480 | I_kwDOAMm_X85MiboQ | 6722 | Avoid loading any data for reprs | dcherian 2448579 | closed | 0 | 5 | 2022-06-24T19:04:30Z | 2022-10-28T16:23:20Z | 2022-10-28T16:23:20Z | MEMBER | What happened?For "small" datasets, we load in to memory when displaying the repr. For cloud backed datasets with large number of "small" variables, this can use a lot of time sequentially loading O(100) variables just for a repr. What did you expect to happen?Fast reprs! Minimal Complete Verifiable ExampleThis dataset has 48 "small" variables ```Python import xarray as xr dc1 = xr.open_dataset('s3://its-live-data/datacubes/v02/N40E080/ITS_LIVE_vel_EPSG32645_G0120_X250000_Y4750000.zarr', engine= 'zarr', storage_options = {'anon':True}) dc1.repr_html() ``` On MVCE confirmation
Relevant log outputNo response Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.4 | packaged by conda-forge | (main, Mar 24 2022, 17:43:32) [Clang 12.0.1 ]
python-bits: 64
OS: Darwin
OS-release: 21.5.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: None
libnetcdf: None
xarray: 2022.3.0
pandas: 1.4.2
numpy: 1.22.4
scipy: 1.8.1
netCDF4: None
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: 2.11.3
cftime: None
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.2.10
cfgrib: None
iris: None
bottleneck: None
dask: 2022.05.2
distributed: None
matplotlib: 3.5.2
cartopy: 0.20.2
seaborn: 0.11.2
numbagg: None
fsspec: 2022.5.0
cupy: None
pint: None
sparse: None
setuptools: 62.3.2
pip: 22.1.2
conda: None
pytest: None
IPython: 8.4.0
sphinx: 4.5.0
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6722/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1309839509 | I_kwDOAMm_X85OEpCV | 6810 | Convert upstream-dev CI scripts to github Action | dcherian 2448579 | closed | 0 | 2 | 2022-07-19T17:32:15Z | 2022-10-26T09:12:43Z | 2022-10-26T09:12:43Z | MEMBER | Is your feature request related to a problem?No. Describe the solution you'd likeIf possible, I think it'd be nice to move a lot of the upstream-dev CI scripting to its own github action like "ci-trigger". This will make it easier to use in other projects (like those under xarray-contrib). I'd like to use it for flox, cf-xarray. Describe alternatives you've consideredNo response Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6810/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1404926762 | I_kwDOAMm_X85TvXsq | 7154 | nightly failure with h5netcdf indexing | dcherian 2448579 | closed | 0 | 8 | 2022-10-11T16:32:33Z | 2022-10-12T14:11:04Z | 2022-10-12T14:11:04Z | MEMBER | What happened?From upstream-dev CI: Workflow Run URL Python 3.10 Test Summary``` xarray/tests/test_backends.py::TestH5NetCDFData::test_orthogonal_indexing: AssertionError: Left and right Dataset objects are not identical Differing coordinates: L numbers (dim3) int64 0 1 2 0 0 R numbers (dim3) int64 ... L * dim3 (dim3) <U1 'a' 'b' 'c' 'd' 'e' R * dim3 (dim3) object 'a' 'b' 'c' 'd' 'e' Differing data variables: L var3 (dim3, dim1) float64 -0.4059 1.247 -0.3095 ... 0.8073 -0.2758 foo: variable R var3 (dim3, dim1) float64 ... foo: variable L var2 (dim1, dim2) float64 0.3307 -1.768 -1.454 ... -0.6426 2.697 0.4849 foo: variable R var2 (dim1, dim2) float64 ... foo: variable L var1 (dim1, dim2) float64 -1.639 1.625 0.3936 ... -0.8715 0.2285 -0.0473 foo: variable R var1 (dim1, dim2) float64 ... foo: variable xarray/tests/test_backends.py::TestH5NetCDFData::test_vectorized_indexing: AttributeError: 'list' object has no attribute 'stop' xarray/tests/test_backends.py::TestH5NetCDFData::test_isel_dataarray: AssertionError: Left and right Dataset objects are not identical Differing data variables: L var2 (dim1, dim2) float64 0.6563 0.3721 1.274 ... 1.106 -0.2169 1.502 foo: variable R var2 (dim1, dim2) float64 ... foo: variable L var1 (dim1, dim2) float64 0.2482 0.4837 2.044 ... -0.8528 -1.536 -0.3347 foo: variable R var1 (dim1, dim2) float64 ... foo: variable xarray/tests/test_backends.py::TestH5NetCDFData::test_array_type_after_indexing: AssertionError: Left and right Dataset objects are not identical Differing coordinates: L numbers (dim3) int64 0 1 2 0 0 R numbers (dim3) int64 ... L * dim3 (dim3) <U1 'a' 'b' 'c' 'd' 'e' R * dim3 (dim3) object 'a' 'b' 'c' 'd' 'e' Differing data variables: L var3 (dim3, dim1) float64 -0.02351 -2.274 0.9986 ... -1.546 0.1454 foo: variable R var3 (dim3, dim1) float64 ... foo: variable L var2 (dim1, dim2) float64 0.7681 1.803 1.406 ... 1.524 0.5592 -0.5456 foo: variable R var2 (dim1, dim2) float64 ... foo: variable L var1 (dim1, dim2) float64 0.8966 -0.1489 0.3954 ... -0.689 -0.9191 foo: variable R var1 (dim1, dim2) float64 ... foo: variable xarray/tests/test_backends.py::TestH5NetCDFFileObject::test_orthogonal_indexing: AssertionError: Left and right Dataset objects are not identical Differing coordinates: L numbers (dim3) int64 0 1 2 0 0 R numbers (dim3) int64 ... L * dim3 (dim3) <U1 'a' 'b' 'c' 'd' 'e' R * dim3 (dim3) object 'a' 'b' 'c' 'd' 'e' Differing data variables: L var3 (dim3, dim1) float64 -0.4183 -0.3932 -0.01572 ... 0.6842 -0.4205 foo: variable R var3 (dim3, dim1) float64 ... foo: variable L var2 (dim1, dim2) float64 1.008 0.4886 -1.046 ... -1.152 -0.8104 1.077 foo: variable R var2 (dim1, dim2) float64 ... foo: variable L var1 (dim1, dim2) float64 -1.11 -0.3574 -1.076 ... 0.7554 0.1688 0.5749 foo: variable R var1 (dim1, dim2) float64 ... foo: variable xarray/tests/test_backends.py::TestH5NetCDFFileObject::test_vectorized_indexing: AttributeError: 'list' object has no attribute 'stop' xarray/tests/test_backends.py::TestH5NetCDFFileObject::test_isel_dataarray: AssertionError: Left and right Dataset objects are not identical Differing data variables: L var2 (dim1, dim2) float64 0.2409 0.5855 1.56 ... 0.4115 -0.4185 0.6749 foo: variable R var2 (dim1, dim2) float64 ... foo: variable L var1 (dim1, dim2) float64 -1.05 0.8272 -1.445 ... 0.3286 -0.05075 0.9352 foo: variable R var1 (dim1, dim2) float64 ... foo: variable xarray/tests/test_backends.py::TestH5NetCDFFileObject::test_array_type_after_indexing: AssertionError: Left and right Dataset objects are not identical Differing coordinates: L numbers (dim3) int64 0 1 2 0 0 R numbers (dim3) int64 ... L * dim3 (dim3) <U1 'a' 'b' 'c' 'd' 'e' R * dim3 (dim3) object 'a' 'b' 'c' 'd' 'e' Differing data variables: L var3 (dim3, dim1) float64 -0.8477 0.8072 0.4219 ... 0.2703 0.5475 -1.696 foo: variable R var3 (dim3, dim1) float64 ... foo: variable L var2 (dim1, dim2) float64 -0.9968 0.1141 0.7767 ... 0.09977 -0.7788 foo: variable R var2 (dim1, dim2) float64 ... foo: variable L var1 (dim1, dim2) float64 2.949 -0.4085 0.7757 ... -0.2474 2.141 1.753 foo: variable R var1 (dim1, dim2) float64 ... foo: variable xarray/tests/test_formatting.py::test__mapping_repr_recursive: ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. ``` </details>cc @benbovy @kmuehlbauer Environment
INSTALLED VERSIONS
------------------
commit: 8eea8bb67bad0b5ac367c082125dd2b2519d4f52
python: 3.10.6 | packaged by conda-forge | (main, Aug 22 2022, 20:35:26) [GCC 10.4.0]
python-bits: 64
OS: Linux
OS-release: 5.15.0-1020-azure
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: C.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2022.9.1.dev12+g8eea8bb6
pandas: 1.6.0.dev0+297.g55dc32437e
numpy: 1.24.0.dev0+896.g5ecaf36cd
scipy: 1.10.0.dev0+2012.5be8bc4
netCDF4: 1.6.0
pydap: installed
h5netcdf: 1.1.0.dev5+g1168b4f
h5py: 3.7.0
Nio: None
zarr: 2.13.4.dev1
cftime: 1.6.2
nc_time_axis: 1.3.1.dev34+g0999938
PseudoNetCDF: 3.2.2
rasterio: 1.4dev
cfgrib: 0.9.10.2
iris: 3.3.1
bottleneck: 1.3.5
dask: 2022.9.2+17.g5ba240b9
distributed: 2022.9.2+19.g07e22593
matplotlib: 3.7.0.dev320+g834c89c512
cartopy: 0.21.0
seaborn: 0.12.0
numbagg: None
fsspec: 2022.8.2+14.g3969aaf
cupy: None
pint: 0.19.3.dev87+g052a920
sparse: None
flox: 0.5.11.dev3+g031979d
numpy_groupies: 0.9.19
setuptools: 65.4.1
pip: 22.2.2
conda: None
pytest: 7.1.3
IPython: None
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7154/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1333514579 | I_kwDOAMm_X85Pe9FT | 6902 | Flox based groupby operations don't support `dtype` in mean method | dcherian 2448579 | closed | 0 | 3 | 2022-08-09T16:38:25Z | 2022-10-11T17:45:27Z | 2022-10-11T17:45:27Z | MEMBER | Discussed in https://github.com/pydata/xarray/discussions/6901
<sup>Originally posted by **tasansal** August 9, 2022</sup>
We have been using the new groupby logic with Flox and numpy_groupies; however, when we run the following, the dtype is not recognized as a valid argument.
This breaks API compatibility for cases where you may not have the acceleration libraries installed.
Not sure if this has to be upstream in
In addition to base Xarray we have the following extras installed:
Flox
numpy_groupies
Bottleneck
We do this because our data is `float32` but we want the accumulator in mean to be `float64` for accuracy.
One solution is to cast the variable to float64 before mean, which may cause a copy and spike in memory usage.
When Flox and numpy_groupies are not installed, it works as expected.
We are working with multi-dimensional time-series of weather forecast models.
```python
da = xr.load_mfdataset(...)
da.groupby("time.month").mean(dtype='float64').compute()
```
Here is the end of the traceback and it appears it is on Flox.
```shell
File "/home/altay_sansal_tgs_com/miniconda3/envs/wind-data-mos/lib/python3.10/site-packages/flox/core.py", line 786, in _aggregate
return _finalize_results(results, agg, axis, expected_groups, fill_value, reindex)
File "/home/altay_sansal_tgs_com/miniconda3/envs/wind-data-mos/lib/python3.10/site-packages/flox/core.py", line 747, in _finalize_results
finalized[agg.name] = agg.finalize(*squeezed["intermediates"], **agg.finalize_kwargs)
TypeError: <lambda>() got an unexpected keyword argument 'dtype'
```
What is the best way to handle this, maybe fix it in Flox? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6902/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1382753751 | I_kwDOAMm_X85SayXX | 7069 | release? | dcherian 2448579 | closed | 0 | 5 | 2022-09-22T17:00:58Z | 2022-10-01T18:25:13Z | 2022-10-01T18:25:13Z | MEMBER | What is your issue?It's been 3 months since our last release. We still have quite a few regressions from the last release but @benbovy does have open PRs for a number of them. However, we do have some nice bugfixes and other commits in the mean time. I propose we issue a new release, perhaps after @benbovy merges the PRs he thinks are ready. I'll be out of town for the next few days, so if someone else could volunteer to be release manager that would be great! |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7069/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
626591460 | MDU6SXNzdWU2MjY1OTE0NjA= | 4107 | renaming Variable to a dimension name does not convert to IndexVariable | dcherian 2448579 | closed | 0 | benbovy 4160723 | 0 | 2020-05-28T15:11:49Z | 2022-09-27T09:33:42Z | 2022-09-27T09:33:42Z | MEMBER | Seen in #4103 MCVE Code Sample```python from xarray.tests import assert_identical coord_1 = xr.DataArray([1, 2], dims=["coord_1"], attrs={"attrs": True}) da = xr.DataArray([1, 0], [coord_1]) obj = da.reset_index("coord_1").rename({"coord_1_": "coord_1"}) assert_identical(da, obj) ``` Expected OutputProblem Description``` AssertionErrorTraceback (most recent call last) <ipython-input-19-02ef6bd89884> in <module> ----> 1 assert_identical(da, obj) ~/work/python/xarray/xarray/tests/init.py in assert_identical(a, b) 160 xarray.testing.assert_identical(a, b) 161 xarray.testing._assert_internal_invariants(a) --> 162 xarray.testing._assert_internal_invariants(b) 163 164 ~/work/python/xarray/xarray/testing.py in _assert_internal_invariants(xarray_obj) 265 _assert_variable_invariants(xarray_obj) 266 elif isinstance(xarray_obj, DataArray): --> 267 _assert_dataarray_invariants(xarray_obj) 268 elif isinstance(xarray_obj, Dataset): 269 _assert_dataset_invariants(xarray_obj) ~/work/python/xarray/xarray/testing.py in _assert_dataarray_invariants(da) 210 assert all( 211 isinstance(v, IndexVariable) for (k, v) in da._coords.items() if v.dims == (k,) --> 212 ), {k: type(v) for k, v in da._coords.items()} 213 for k, v in da._coords.items(): 214 _assert_variable_invariants(v, k) AssertionError: {'coord_1': <class 'xarray.core.variable.Variable'>} ``` VersionsOutput of <tt>xr.show_versions()</tt> |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4107/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | |||||
1315480779 | I_kwDOAMm_X85OaKTL | 6817 | wrong mean of complex values | dcherian 2448579 | closed | 0 | 1 | 2022-07-22T23:09:47Z | 2022-07-23T02:03:11Z | 2022-07-23T02:03:11Z | MEMBER | What happened?Seen in #4972 ``` python import xarray as xr import numpy as np array = np.array([0. +0.j, 0.+np.nan * 1j], dtype=np.complex64) var = xr.Variable("x", array) print(var.mean().data) print(array.mean()) ```
What did you expect to happen?No response Minimal Complete Verifiable ExampleNo response MVCE confirmation
Relevant log outputNo response Anything else we need to know?No response Environment |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6817/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1298145215 | I_kwDOAMm_X85NYB-_ | 6763 | Map_blocks should raise nice error if provided template has no dask arrays | dcherian 2448579 | closed | 0 | 3 | 2022-07-07T21:58:06Z | 2022-07-14T17:42:26Z | 2022-07-14T17:42:26Z | MEMBER | Discussed in https://github.com/pydata/xarray/discussions/6762
<sup>Originally posted by **tlsw231** July 7, 2022</sup>
I am trying to use `map_blocks` to: ingest a multi-dimensional array as input, reduce along one dimension and add extra dimensions to the output. Is this possible? I am attaching a simple MRE below that gives me an `zip argument #2 must support iteration` error. Any pointers on what I might be doing wrong?
[My real example is a 3d-dataset with `(time,lat,lon)` dimensions and I am trying to reduce along `time` while adding two new dimensions to the output. I tried so many things and got so many errors, including the one in the title, that I thought it is better to first understand how `map_blocks` works!]
```
# The goal is to feed in a 2d array, reduce along one dimension and add two new dimensions to the output.
chunks={}
dummy = xr.DataArray(data=np.random.random([8,100]),dims=['dim1','dim2']).chunk(chunks)
def some_func(func):
dims=func.dims
n1 = len(func[func.dims[1]]) # This is 'dim2', we will average along 'dim1' below in the for loop
newdim1 = 2; newdim2 = 5;
output = xr.DataArray(np.nan*np.ones([n1,newdim1,newdim2]),dims=[dims[1],'new1','new2'])
for n in range(n1):
fmean = func.isel(dim2=n).mean(dims[0]).compute()
for i in range(newdim1):
for j in range(newdim2):
output[n,i,j] = fmean
return output
#out = some_func(dummy) # This works
template=xr.DataArray(np.nan*np.ones([len(dummy.dim2),2,5]),
dims=['dim2','new1','new2'])
out = xr.map_blocks(some_func,dummy,template=template).compute() # gives me the error message in the title
```
[Edit: Fixed a typo in the `n1 = len(func[func.dims[1]])` line, of course getting the same error.] |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6763/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1289174987 | I_kwDOAMm_X85M1z_L | 6739 | "center" kwarg ignored when manually iterating over DataArrayRolling | dcherian 2448579 | closed | 0 | 0 | 2022-06-29T19:07:07Z | 2022-07-14T17:41:01Z | 2022-07-14T17:41:01Z | MEMBER | Discussed in https://github.com/pydata/xarray/discussions/6738
<sup>Originally posted by **ckingdon95** June 29, 2022</sup>
Hello, I am trying to manually iterate over a DataArrayRolling object, as described [here ](https://docs.xarray.dev/en/stable/user-guide/computation.html#rolling-window-operations)in the documentation.
I am confused why the following two code chunks do not produce the same sequence of values. I would like to be able to manually iterate over a DataArrayRolling object, and still be given center-justified windows. Is there a way to do this?
```python
import xarray as xr
import numpy as np
my_data = xr.DataArray(np.arange(1,10), dims="x")
# Option 1: take a center-justified rolling average
result1 = my_data.rolling(x=3, center=True).mean().values
result1
```
This returns the following values, as expected:
```
array([nan, 2., 3., 4., 5., 6., 7., 8., nan])
```
Whereas when I do it manually, it is not equivalent:
```python
# Option 2: try to manually iterate, but the result is not centered
my_data_rolling = my_data.rolling(x=3, center=True)
result2 = [window.mean().values.item() for label, window in my_data_rolling]
result2
```
This returns
```
[nan, nan, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]
```
Is this an issue with the window iterator? If it is not an issue, then is there a way for me to get the center-justified windows in the manual iteration? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6739/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1290524064 | I_kwDOAMm_X85M69Wg | 6741 | some private imports broken on main | dcherian 2448579 | closed | 0 | 6 | 2022-06-30T18:59:28Z | 2022-07-06T03:06:31Z | 2022-07-06T03:06:31Z | MEMBER | What happened?Seen over in cf_xarray Using Now we need to use I don't know if this is something that needs to be fixed or only worked coincidentally earlier. But I thought it was worth discussing prior to release. Thanks to @aulemahal for spotting |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6741/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
968977385 | MDU6SXNzdWU5Njg5NzczODU= | 5699 | describe options in documentation | dcherian 2448579 | closed | 0 | 0 | 2021-08-12T14:48:00Z | 2022-06-25T20:01:07Z | 2022-06-25T20:01:07Z | MEMBER | I think we only describe available options in the API reference for |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5699/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1178907807 | I_kwDOAMm_X85GRLSf | 6407 | Add backend tutorial material | dcherian 2448579 | closed | 0 | 0 | 2022-03-24T03:44:22Z | 2022-06-23T01:51:44Z | 2022-06-23T01:51:44Z | MEMBER | What is your issue?@aurghs developed some nice backend tutorial material for the Dask Summit: https://github.com/aurghs/xarray-backend-tutorial It'd be nice to add it either to our main documentation or to https://github.com/xarray-contrib/xarray-tutorial. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6407/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1258338848 | I_kwDOAMm_X85LALog | 6659 | Publish nightly releases to TestPyPI | dcherian 2448579 | closed | 0 | 6 | 2022-06-02T15:21:24Z | 2022-06-07T08:37:02Z | 2022-06-06T22:33:15Z | MEMBER | Is your feature request related to a problem?From @keewis in #6645
Describe the solution you'd likeNo response Describe alternatives you've consideredNo response Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6659/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1238783899 | I_kwDOAMm_X85J1leb | 6616 | flox breaks multiindex groupby | dcherian 2448579 | closed | 0 | 0 | 2022-05-17T15:05:00Z | 2022-05-17T16:11:18Z | 2022-05-17T16:11:18Z | MEMBER | What happened?From @malmans2 ``` python import numpy as np import xarray as xr ds = xr.Dataset( dict(a=(("z",), np.ones(10))), coords=dict(b=(("z"), np.arange(2).repeat(5)), c=(("z"), np.arange(5).repeat(2))), ).set_index(bc=["b", "c"]) grouped = ds.groupby("bc") with xr.set_options(use_flox=False): grouped.sum() # OK with xr.set_options(use_flox=True): grouped.sum() # Error ``` What did you expect to happen?No response Minimal Complete Verifiable ExampleNo response MVCE confirmation
Relevant log output```Python ctests/test_xarray.py:329: in test_multi_index_groupby_sum actual = xarray_reduce(ds, "bc", func="sum") flox/xarray.py:374: in xarray_reduce actual[k] = v.expand_dims(missing_group_dims) ../xarray/xarray/core/dataset.py:1427: in setitem self.update({key: value}) ../xarray/xarray/core/dataset.py:4432: in update merge_result = dataset_update_method(self, other) ../xarray/xarray/core/merge.py:1070: in dataset_update_method return merge_core( ../xarray/xarray/core/merge.py:722: in merge_core aligned = deep_align( ../xarray/xarray/core/alignment.py:824: in deep_align aligned = align( ../xarray/xarray/core/alignment.py:761: in align aligner.align() ../xarray/xarray/core/alignment.py:550: in align self.assert_unindexed_dim_sizes_equal() ../xarray/xarray/core/alignment.py:450: in assert_unindexed_dim_sizes_equal raise ValueError( E ValueError: cannot reindex or align along dimension 'bc' because of conflicting dimension sizes: {10, 6} (note: an index is found along that dimension with size=10) ____ test_multi_index_groupby_sum[numpy] _______________________________ tests/test_xarray.py:329: in test_multi_index_groupby_sum actual = xarray_reduce(ds, "bc", func="sum") flox/xarray.py:374: in xarray_reduce actual[k] = v.expand_dims(missing_group_dims) ../xarray/xarray/core/dataset.py:1427: in __setitem self.update({key: value}) ../xarray/xarray/core/dataset.py:4432: in update merge_result = dataset_update_method(self, other) ../xarray/xarray/core/merge.py:1070: in dataset_update_method return merge_core( ../xarray/xarray/core/merge.py:722: in merge_core aligned = deep_align( ../xarray/xarray/core/alignment.py:824: in deep_align aligned = align( ../xarray/xarray/core/alignment.py:761: in align aligner.align() ../xarray/xarray/core/alignment.py:550: in align self.assert_unindexed_dim_sizes_equal() ../xarray/xarray/core/alignment.py:450: in assert_unindexed_dim_sizes_equal raise ValueError( E ValueError: cannot reindex or align along dimension 'bc' because of conflicting dimension sizes: {10, 6} (note: an index is found along that dimension with size=10) Anything else we need to know?No response Environment |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6616/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1235494254 | I_kwDOAMm_X85JpCVu | 6606 | Fix benchmark CI | dcherian 2448579 | closed | 0 | 0 | 2022-05-13T17:18:32Z | 2022-05-14T23:06:44Z | 2022-05-14T23:06:44Z | MEMBER | What is your issue?It's failing during setup: https://github.com/pydata/xarray/runs/6424624397?check_suite_focus=true ``` · Discovering benchmarks ·· Uninstalling from conda-py3.8-bottleneck-dask-distributed-flox-netcdf4-numpy-numpy_groupies-pandas-scipy-sparse ·· Building dd20d07f for conda-py3.8-bottleneck-dask-distributed-flox-netcdf4-numpy-numpy_groupies-pandas-scipy-sparse ·· Error running /home/runner/work/xarray/xarray/asv_bench/.asv/env/e8ce5703538597037a298414451d04d2/bin/python -mpip wheel --no-deps --no-index -w /home/runner/work/xarray/xarray/asv_bench/.asv/env/e8ce5703538597037a298414451d04d2/asv-build-cache/dd20d07f4057a9e29222ca132c36cbaaf3fbb242 /home/runner/work/xarray/xarray/asv_bench/.asv/env/e8ce5703538597037a298414451d04d2/project (exit status 1) STDOUT --------> Processing /home/runner/work/xarray/xarray/asv_bench/.asv/env/e8ce5703538597037a298414451d04d2/project STDERR --------> ERROR: Some build dependencies for file:///home/runner/work/xarray/xarray/asv_bench/.asv/env/e8ce5703538597037a298414451d04d2/project are missing: 'setuptools_scm[toml]>=3.4', 'setuptools_scm_git_archive'. ·· Failed: trying different commit/environment ·· Uninstalling from conda-py3.8-bottleneck-dask-distributed-flox-netcdf4-numpy-numpy_groupies-pandas-scipy-sparse ·· Building c34ef8a6 for conda-py3.8-bottleneck-dask-distributed-flox-netcdf4-numpy-numpy_groupies-pandas-scipy-sparse ·· Error running /home/runner/work/xarray/xarray/asv_bench/.asv/env/e8ce5703538597037a298414451d04d2/bin/python -mpip wheel --no-deps --no-index -w /home/runner/work/xarray/xarray/asv_bench/.asv/env/e8ce5703538597037a298414451d04d2/asv-build-cache/c34ef8a60227720724e90aa11a6266c0026a812a /home/runner/work/xarray/xarray/asv_bench/.asv/env/e8ce5703538597037a298414451d04d2/project (exit status 1) STDOUT --------> Processing /home/runner/work/xarray/xarray/asv_bench/.asv/env/e8ce5703538597037a298414451d04d2/project STDERR --------> ERROR: Some build dependencies for file:///home/runner/work/xarray/xarray/asv_bench/.asv/env/e8ce5703538597037a298414451d04d2/project are missing: 'setuptools_scm[toml]>=3.4', 'setuptools_scm_git_archive'. ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6606/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1180334986 | I_kwDOAMm_X85GWnuK | 6411 | Better dask support in polyval | dcherian 2448579 | closed | 0 | 0 | 2022-03-25T04:35:48Z | 2022-05-05T20:17:07Z | 2022-05-05T20:17:07Z | MEMBER | Is your feature request related to a problem?polyval does not handle dask inputs well. ```python nt = 8772 // 4 ny = 489 nx = 655 chunks like the data is stored on disksmall in time, big in spacebecause the chunk sizes are -1 along lat, lon;reshaping this array to (time, latlon) prior to fitting is pretty cheapchunks = (8, -1, -1) da = xr.DataArray( dask.array.random.random((nt, ny, nx), chunks=chunks), dims=("ocean_time", "eta_rho", "xi_rho"), ) dim = "ocean_time" deg = 1 p = da.polyfit(dim="ocean_time", deg=1, skipna=False) create a chunked version of the "ocean_time" dimensionchunked_dim = xr.DataArray(
dask.array.from_array(da[dim].data, chunks=da.chunksizes[dim]), dims=dim, name=dim
)
xr.polyval(chunked_dim, p.polyfit_coefficients)
```
Describe the solution you'd likeHere's a partial solution. It does not handle datetime inputs (polyval handles this using ```python def polyval(coord, coeffs, degree_dim="degree"): x = coord.data
polyval(chunked_dim, p.polyfit_coefficients) ``` This looks like what I expected
cc @aulemahal Describe alternatives you've consideredNo response Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6411/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1207159549 | I_kwDOAMm_X85H88r9 | 6497 | restrict stale bot | dcherian 2448579 | closed | 0 | 1 | 2022-04-18T15:25:56Z | 2022-04-18T16:11:11Z | 2022-04-18T16:11:11Z | MEMBER | What is your issue?We have some stale issue but not that many. Can we restrict the bot to only issues that are untagged, or tagged as "usage question" or are not assigned to a "project" instead? This might reduce a lot of the noise. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6497/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1188406993 | I_kwDOAMm_X85G1abR | 6430 | Bug in broadcasting with multi-indexes | dcherian 2448579 | closed | 0 | 1 | 2022-03-31T17:25:57Z | 2022-04-13T14:49:23Z | 2022-04-13T14:49:23Z | MEMBER | What happened?``` python import numpy as np import xarray as xr ds = xr.Dataset( {"foo": (("x", "y", "z"), np.ones((3, 4, 2)))}, {"x": ["a", "b", "c"], "y": [1, 2, 3, 4]}, ) expected = ds.sum("z") stacked = ds.stack(space=["x", "y"]) broadcasted, _ = xr.broadcast(stacked, stacked.space) stacked.sum("z").unstack("space") # works broadcasted.sum("z").unstack("space") # error ``` ```ValueError Traceback (most recent call last) Input In [13], in <module> 10 broadcasted, _ = xr.broadcast(stacked, stacked.space) 11 stacked.sum("z").unstack("space") ---> 12 broadcasted.sum("z").unstack("space") File ~/work/python/xarray/xarray/core/dataset.py:4332, in Dataset.unstack(self, dim, fill_value, sparse) 4330 non_multi_dims = set(dims) - set(stacked_indexes) 4331 if non_multi_dims: -> 4332 raise ValueError( 4333 "cannot unstack dimensions that do not " 4334 f"have exactly one multi-index: {tuple(non_multi_dims)}" 4335 ) 4337 result = self.copy(deep=False) 4339 # we want to avoid allocating an object-dtype ndarray for a MultiIndex, 4340 # so we can't just access self.variables[v].data for every variable. 4341 # We only check the non-index variables. 4342 # https://github.com/pydata/xarray/issues/5902 ValueError: cannot unstack dimensions that do not have exactly one multi-index: ('space',) ``` What did you expect to happen?This should work. Minimal Complete Verifiable ExampleNo response Relevant log outputNo response Anything else we need to know?No response Environmentxarray main after the flexible indexes refactor |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6430/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1193704369 | I_kwDOAMm_X85HJnux | 6444 | xr.where with scalar as second argument fails with keep_attrs=True | dcherian 2448579 | closed | 0 | 1 | 2022-04-05T20:51:18Z | 2022-04-12T02:12:39Z | 2022-04-12T02:12:39Z | MEMBER | What happened?``` python import xarray as xr xr.where(xr.DataArray([1, 2, 3]) > 0, 1, 0) ``` fails with
IndexError: list index out of range ``` The workaround is to pass What did you expect to happen?No response Minimal Complete Verifiable ExampleNo response Relevant log outputNo response Anything else we need to know?No response Environmentxarray 2022.3.0 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6444/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
528168017 | MDU6SXNzdWU1MjgxNjgwMTc= | 3573 | rasterio test failure | dcherian 2448579 | closed | 0 | 1 | 2019-11-25T15:40:19Z | 2022-04-09T01:17:32Z | 2022-04-09T01:17:32Z | MEMBER | version
``` =================================== FAILURES =================================== ___ TestRasterio.testrasterio_vrt ____ self = <xarray.tests.test_backends.TestRasterio object at 0x7fc8355c8f60>
xarray/tests/test_backends.py:3966: /usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/rasterio/sample.py:43: in sample_gen data = read(indexes, window=window, masked=masked, boundless=True)
rasterio/_warp.pyx:978: ValueError ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3573/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1189140909 | I_kwDOAMm_X85G4Nmt | 6434 | concat along dim with mix of scalar coordinate and array coordinates is not right | dcherian 2448579 | closed | 0 | 3 | 2022-04-01T02:29:16Z | 2022-04-06T01:19:47Z | 2022-04-06T01:19:47Z | MEMBER | What happened?Really hard to describe in words =)
fails when cc @benbovy What did you expect to happen?No response Minimal Complete Verifiable Example```Python import numpy as np import xarray as xr time = xr.DataArray( np.array( ["2013-01-01T00:00:00.000000000", "2013-01-01T06:00:00.000000000"], dtype="datetime64[ns]", ), dims="time", name="time", ) da = time concat = xr.concat([da.isel(time=0), da.isel(time=[1])], dim="time") xr.align(da, concat, join="exact") # works da = xr.DataArray(np.ones(time.shape), dims="time", coords={"time": time}) concat = xr.concat([da.isel(time=0), da.isel(time=[1])], dim="time") xr.align(da, concat, join="exact") ``` Relevant log output```ValueError Traceback (most recent call last) Input In [27], in <module> 17 da = xr.DataArray(np.ones(time.shape), dims="time", coords={"time": time}) 18 concat = xr.concat([da.isel(time=0), da.isel(time=[1])], dim="time") ---> 19 xr.align(da, concat, join="exact") File ~/work/python/xarray/xarray/core/alignment.py:761, in align(join, copy, indexes, exclude, fill_value, *objects) 566 """ 567 Given any number of Dataset and/or DataArray objects, returns new 568 objects with aligned indexes and dimension sizes. (...) 751 752 """ 753 aligner = Aligner( 754 objects, 755 join=join, (...) 759 fill_value=fill_value, 760 ) --> 761 aligner.align() 762 return aligner.results File ~/work/python/xarray/xarray/core/alignment.py:549, in Aligner.align(self) 547 self.find_matching_unindexed_dims() 548 self.assert_no_index_conflict() --> 549 self.align_indexes() 550 self.assert_unindexed_dim_sizes_equal() 552 if self.join == "override": File ~/work/python/xarray/xarray/core/alignment.py:395, in Aligner.align_indexes(self) 393 if need_reindex: 394 if self.join == "exact": --> 395 raise ValueError( 396 "cannot align objects with join='exact' where " 397 "index/labels/sizes are not equal along " 398 "these coordinates (dimensions): " 399 + ", ".join(f"{name!r} {dims!r}" for name, dims in key[0]) 400 ) 401 joiner = self._get_index_joiner(index_cls) 402 joined_index = joiner(matching_indexes) ValueError: cannot align objects with join='exact' where index/labels/sizes are not equal along these coordinates (dimensions): 'time' ('time',) ``` Anything else we need to know?No response Environmentxarray main |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6434/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1001197796 | I_kwDOAMm_X847rRDk | 5804 | vectorized groupby binary ops | dcherian 2448579 | closed | 0 | 1 | 2021-09-20T17:04:47Z | 2022-03-29T07:11:28Z | 2022-03-29T07:11:28Z | MEMBER | By switching to Here's an example array ``` python import numpy as np import xarray as xr %load_ext memory_profiler N = 4 * 2000 da = xr.DataArray( np.random.random((N, N)), dims=("x", "y"), coords={"labels": ("x", np.repeat(["a", "b", "c", "d", "e", "f", "g", "h"], repeats=N//8))}, ) ``` Consider this "anomaly" calculation, anomaly defined relative to the group mean ``` python def anom_current(da): grouped = da.groupby("labels") mean = grouped.mean() anom = grouped - mean return anom ``` With this approach, we loop over each group and apply the binary operation: https://github.com/pydata/xarray/blob/a1635d324753588e353e4e747f6058936fa8cf1e/xarray/core/computation.py#L502-L525 This saves some memory, but becomes slow for large number of groups. We could instead do
Now we are faster, but construct an extra array as big as the original array (I think this is an OK tradeoff). ``` %timeit anom_current(da) 1.4 s ± 20.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)%timeit anom_vectorized(da) 937 ms ± 5.26 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)```(I haven't experimented with dask yet, so the following is just a theory). I think the real benefit comes with dask. Depending on where the groups are located relative to chunking, we could end up creating a lot of tiny chunks by splitting up existing chunks. With the vectorized approach we can do better. Ideally we would reindex the "mean" dask array with a numpy-array-of-repeated-ints such that the chunking of ~In practice, dask.array.take doesn't allow specifying "output chunks" so we'd end up chunking "mean_expanded" based on dask's automatic heuristics, and then rechunking again for the binary operation.~ Thoughts? cc @rabernat |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5804/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1178949620 | I_kwDOAMm_X85GRVf0 | 6408 | backwards incompatible changes in reductions | dcherian 2448579 | closed | 0 | 2 | 2022-03-24T04:11:00Z | 2022-03-26T08:44:43Z | 2022-03-26T08:44:43Z | MEMBER | What is your issue?I merged #5950 but forgot that it included some backward-incompatible changes (Sorry! this came up in https://github.com/pydata/xarray/pull/6403 thanks to @mathause for spotting.)
These have been standardized now, and only @pydata/xarray Should we add a deprecation cycle (https://github.com/pydata/xarray/issues/5531)? Point (2) above will make it a little messy. At the very least we should add a deprecation notice before releasing. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6408/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1174177534 | I_kwDOAMm_X85F_Ib- | 6381 | vectorized indexing with DataArray should not preserve IndexVariable | dcherian 2448579 | closed | 0 | 1 | 2022-03-19T05:08:39Z | 2022-03-21T04:47:47Z | 2022-03-21T04:47:47Z | MEMBER | What happened?After vectorized indexing a DataArray with dim What did you expect to happen?
Minimal Complete Verifiable Example```python import xarray as xr xr.set_options(display_style="text") da = xr.DataArray([1, 2, 3], dims="x", coords={"x": [0, 1, 2]}) idxr = xr.DataArray([1], dims="z", name="x", coords={"z": ("z", ["a"])}) da.sel(x=idxr) ```
Relevant log outputNo response Anything else we need to know?No response Environmentxarray main but this bug was present prior to the explicit indexes refactor. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6381/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1171932478 | I_kwDOAMm_X85F2kU- | 6373 | Zarr backend should avoid checking for invalid encodings | dcherian 2448579 | closed | 0 | 3 | 2022-03-17T04:55:35Z | 2022-03-18T10:06:01Z | 2022-03-18T04:19:48Z | MEMBER | What is your issue?The zarr backend has a list of "valid" encodings that needs to be updated any time zarr adds something new (e.g. https://github.com/pydata/xarray/pull/6348) Can we get rid of this? I don't know the backends code well, but won't all our encoding parameters have been removed by this stage? The @tomwhite points out that zarr will raise a warning: ``` python
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6373/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1170533154 | I_kwDOAMm_X85FxOsi | 6363 | failing flaky test: rasterio vrt | dcherian 2448579 | closed | 0 | 2 | 2022-03-16T04:38:53Z | 2022-03-17T06:25:22Z | 2022-03-17T06:25:22Z | MEMBER | What happened?This test is failing with a 404 error: What did you expect to happen?No response Minimal Complete Verifiable ExampleNo response Relevant log outputNo response Anything else we need to know?No response EnvironmentN/A |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6363/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1119738354 | I_kwDOAMm_X85Cvdny | 6222 | test packaging & distribution | dcherian 2448579 | closed | 0 | 4 | 2022-01-31T17:42:40Z | 2022-02-03T15:45:17Z | 2022-02-03T15:45:17Z | MEMBER | Is your feature request related to a problem?It seems like we should have a test to make sure our dependencies are specified correctly. Describe the solution you'd likeFor instance we could add a step to the release workflow: https://github.com/pydata/xarray/blob/b09de8195a9e22dd35d1b7ed608ea15dad0806ef/.github/workflows/pypi-release.yaml#L34-L43 after Alternatively we could have another test config in our regular CI to build + import. Thoughts? Is this excessive for a somewhat rare problem? Describe alternatives you've consideredNo response Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6222/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1072473598 | I_kwDOAMm_X84_7KX- | 6051 | Check for just ... in stack etc, and raise with a useful error message | dcherian 2448579 | closed | 0 | 4 | 2021-12-06T18:35:27Z | 2022-01-03T23:05:23Z | 2022-01-03T23:05:23Z | MEMBER | Is your feature request related to a problem? Please describe. The following doesn't work ``` python import xarray as xr da = xr.DataArray([[1,2],[1,2]], dims=("x", "y")) da.stack(flat=...) ``` Describe the solution you'd like
This could be equivalent to
I think using |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6051/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
767941842 | MDU6SXNzdWU3Njc5NDE4NDI= | 4697 | deprecate open_rasterio in favour of a rioxarray entrypoint? | dcherian 2448579 | closed | 0 | 8 | 2020-12-15T18:05:58Z | 2021-10-02T20:38:35Z | 2021-10-02T20:38:35Z | MEMBER | Now that our backends work is well underway, it seems like a good time to discuss deprecating the From @jhamman's comment
I am in favour of doing this. I see no reason why there should be two slightly divergent versions of the same function, and (anecdotally) the @pydata/xarray What do you think? If we agree to do this (and rioxarray agrees), we could put this as a "deliverable" in our NASA proposal. This work would be totally relevant to that call. Related: #4142 cc @snowman2 @scottyhq @JessicaS11 @WeatherGod |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4697/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
985376146 | MDU6SXNzdWU5ODUzNzYxNDY= | 5758 | RTD build failing | dcherian 2448579 | closed | 0 | 6 | 2021-09-01T16:50:58Z | 2021-09-08T09:47:17Z | 2021-09-08T09:47:16Z | MEMBER | The current RTD build is failing in
Sphinx parallel build error:
RuntimeError: Non Expected exception in |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5758/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
968970143 | MDU6SXNzdWU5Njg5NzAxNDM= | 5698 | Show what options are enabled. | dcherian 2448579 | closed | 0 | 2 | 2021-08-12T14:43:57Z | 2021-09-04T23:44:25Z | 2021-09-04T23:44:25Z | MEMBER | As far as I know, there's no way to see what options are enabled. It'd be nice to add either I think it would be nice to have a one-line description under each option
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5698/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
484240082 | MDU6SXNzdWU0ODQyNDAwODI= | 3245 | sparse and other duck array issues | dcherian 2448579 | closed | 0 | 33 | 2019-08-22T22:10:29Z | 2021-07-21T21:42:48Z | 2021-07-21T21:42:48Z | MEMBER | Issues I've run into working with @friedrichknuth at the Pangeo meeting trying to use sparse
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3245/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
484270833 | MDU6SXNzdWU0ODQyNzA4MzM= | 3248 | combine_by_coords fails with DataArrays | dcherian 2448579 | closed | 0 | 11 | 2019-08-23T00:11:38Z | 2021-07-02T21:34:36Z | 2021-07-02T21:34:36Z | MEMBER | MCVE Code Sample
```ValueError Traceback (most recent call last) <ipython-input-133-d27216ba5688> in <module> 1 da1 = xr.DataArray([1, 2, 3], dims='x', coords={'x': [0, 1, 2]}) 2 da2 = xr.DataArray([3, 4, 5], dims='x', coords={'x': [2, 3, 4]}) ----> 3 xr.combine_by_coords([da1, da2]) ~/work/python/xarray/xarray/core/combine.py in combine_by_coords(datasets, compat, data_vars, coords, fill_value, join) 619 compat=compat, 620 fill_value=fill_value, --> 621 join=join, 622 ) 623 ~/work/python/xarray/xarray/core/merge.py in merge(objects, compat, join, fill_value) 588 ) 589 --> 590 obj = obj.to_dataset() if isinstance(obj, DataArray) else obj 591 dict_like_objects.append(obj) 592 ~/work/python/xarray/xarray/core/dataarray.py in to_dataset(self, dim, name) 478 return self._to_dataset_split(dim) 479 else: --> 480 return self._to_dataset_whole(name) 481 482 @property ~/work/python/xarray/xarray/core/dataarray.py in _to_dataset_whole(self, name, shallow_copy) 426 if name is None: 427 raise ValueError( --> 428 "unable to convert unnamed DataArray to a " 429 "Dataset without providing an explicit name" 430 ) ValueError: unable to convert unnamed DataArray to a Dataset without providing an explicit name ``` To get what I want, I need
I think the issue is that the code uses |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3248/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
916318941 | MDU6SXNzdWU5MTYzMTg5NDE= | 5454 | Add coarsen.construct | dcherian 2448579 | closed | 0 | 2 | 2021-06-09T15:08:35Z | 2021-06-24T16:55:25Z | 2021-06-24T16:55:25Z | MEMBER | Like It make https://github.com/pydata/xarray/discussions/5119, and #2419 really easy without having to go through a MultiIndex+unstack operation which is somewhat arcane.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5454/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
664595680 | MDU6SXNzdWU2NjQ1OTU2ODA= | 4260 | use matplotlib's categorical axis features | dcherian 2448579 | closed | 0 | 0 | 2020-07-23T16:01:13Z | 2021-06-21T17:45:39Z | 2021-06-21T17:45:39Z | MEMBER | Is your feature request related to a problem? Please describe. xarray currently doesn't allow plotting against coordinates with string labels for example. Describe the solution you'd like Use matplotlib's categorical axis support. Example: https://matplotlib.org/gallery/lines_bars_and_markers/categorical_variables.html This may be the only place a change is required: https://github.com/pydata/xarray/blob/4e893317240ed1a80e65ea2de107e9179bb65446/xarray/plot/utils.py#L572-L608 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4260/reactions", "total_count": 8, "+1": 8, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
502149236 | MDU6SXNzdWU1MDIxNDkyMzY= | 3371 | Add xr.unify_chunks top level method | dcherian 2448579 | closed | 0 | 4 | 2019-10-03T15:49:09Z | 2021-06-16T14:56:59Z | 2021-06-16T14:56:58Z | MEMBER | This should handle multiple DataArrays and Datasets. Implemented in #3276 as |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3371/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
891200849 | MDU6SXNzdWU4OTEyMDA4NDk= | 5298 | 0.18.1 patch release? | dcherian 2448579 | closed | 0 | 12 | 2021-05-13T16:50:30Z | 2021-05-19T20:47:13Z | 2021-05-19T06:53:13Z | MEMBER | I think we should issue a patch release soon.
Nice to have - [ ] #5252 zarr region - [ ] #5045 assigning to subset - [x] #5239 drop_duplicates - [x] #5288 invalid reference date error Thoughts? Volunteers? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5298/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
891240764 | MDU6SXNzdWU4OTEyNDA3NjQ= | 5299 | failing RTD build | dcherian 2448579 | closed | 0 | 1 | 2021-05-13T17:50:37Z | 2021-05-14T01:04:22Z | 2021-05-14T01:04:22Z | MEMBER | The RTD build is failing on all PRs with
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5299/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
870292042 | MDU6SXNzdWU4NzAyOTIwNDI= | 5232 | release v0.18.0 | dcherian 2448579 | closed | 0 | 60 | 2021-04-28T19:43:30Z | 2021-05-06T21:15:02Z | 2021-05-06T19:25:51Z | MEMBER | As discussed in the meeting, we should issue a release soon with the new backend refactor and the new docs theme. Here's a list of blockers: - [x] #5231 - [x] #5073 - [x] #5235 Would be nice and look done: - [x] #5244 - [x] #5258 - [x] #5101 - [x] ~#4866~ (we should let this sit on master for a while to find bugs) - [x] #4902 - [x] ~#4972~ (this should probably also sit on master for a while) - [x] #5227 - [x] #4740 - [x] #5149 Somewhat important, but no PR yet: - [x] ~#5175~ (as pointed out by @shoyer, this is really a new feature, not a regression, it can wait) @TomNicholas and @alexamici volunteered to handle this. I can be online at release time to help with things if needed. Release instructions are here: https://github.com/pydata/xarray/blob/master/HOW_TO_RELEASE.md IIRC they'll need to be added to the PyPI list and RTD list. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5232/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
501108453 | MDU6SXNzdWU1MDExMDg0NTM= | 3363 | user-friendly additions for dask usage | dcherian 2448579 | closed | 0 | 3 | 2019-10-01T19:48:27Z | 2021-04-19T03:34:18Z | 2021-04-19T03:34:18Z | MEMBER | Any thoughts on adding
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3363/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
654889988 | MDU6SXNzdWU2NTQ4ODk5ODg= | 4215 | setting variables named in CF attributes as coordinate variables | dcherian 2448579 | closed | 0 | 5 | 2020-07-10T16:17:08Z | 2021-04-19T03:32:02Z | 2021-04-19T03:32:02Z | MEMBER | This came up in #2844 by @DWesl (see also #3689) Currently we have There are a number of other CF attributes that can contain variable names. 1. bounds 1. grid_mapping 1. ancillary_variables 1. cell_measures 1. maybe more? As in #3689 it's hard to see why a lot of these variables named in these attributes would be useful as "data variables". Question: Should we allow cc @jthielen |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4215/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
850473442 | MDU6SXNzdWU4NTA0NzM0NDI= | 5113 | docs sidebar formatting has changed | dcherian 2448579 | closed | 0 | 1 | 2021-04-05T16:06:43Z | 2021-04-19T02:35:34Z | 2021-04-19T02:35:34Z | MEMBER | What happened:
The formatting of section headings "for users", "community" etc. has changed: https://xarray.pydata.org/en/latest/
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5113/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
847014702 | MDU6SXNzdWU4NDcwMTQ3MDI= | 5098 | open_dataset regression | dcherian 2448579 | closed | 0 | aurghs 35919497 | 2 | 2021-03-31T17:32:03Z | 2021-04-15T12:11:34Z | 2021-04-15T12:11:34Z | MEMBER | What happened:
What you expected to happen: should replace Minimal Complete Verifiable Example: ```python import xarray as xr da = xr.DataArray([1, 2, 3]) da.to_netcdf("~/bug_report.nc") xr.open_dataarray("~/bug_report.nc") ``` Anything else we need to know?: works on 0.17.0, fails on master |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5098/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | |||||
636666706 | MDU6SXNzdWU2MzY2NjY3MDY= | 4146 | sparse upstream-dev test failures | dcherian 2448579 | closed | 0 | 4 | 2020-06-11T02:20:11Z | 2021-03-17T23:10:45Z | 2020-06-16T16:00:10Z | MEMBER | Here are three of the errors:
``` ``` ____ testdask_token ______
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4146/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
819241806 | MDU6SXNzdWU4MTkyNDE4MDY= | 4980 | fix bottleneck + Dask 1D rolling operations | dcherian 2448579 | closed | 0 | 1 | 2021-03-01T20:38:34Z | 2021-03-01T20:39:28Z | 2021-03-01T20:39:27Z | MEMBER | Just as a reminder. Right now all rolling operations with dask arrays use |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4980/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
806436724 | MDU6SXNzdWU4MDY0MzY3MjQ= | 4894 | release 0.17.0 | dcherian 2448579 | closed | 0 | 14 | 2021-02-11T14:24:18Z | 2021-02-26T20:16:16Z | 2021-02-26T20:16:16Z | MEMBER | Quoting @spencerkclark email:
These three seem like high-priority fixes. Thoughts?
Nice to have
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4894/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
685590739 | MDU6SXNzdWU2ODU1OTA3Mzk= | 4373 | Add Dataset.plot.quiver | dcherian 2448579 | closed | 0 | 0 | 2020-08-25T15:39:37Z | 2021-02-19T14:21:45Z | 2021-02-19T14:21:45Z | MEMBER | I think it would be nice to add a quiver plot function. I got this far in my current project: ``` python @xarray.plot.dataset_plot._dsplot def quiver(ds, x, y, ax, u, v, **kwargs): from xarray import broadcast
``` The autoscaling logic is quite crude; I tried to copy what matplotlib does but got somewhat confused. To get faceting to work properly, we'll need to estimate |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4373/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
674414304 | MDU6SXNzdWU2NzQ0MTQzMDQ= | 4320 | html repr doesn't work in some sphinx themes | dcherian 2448579 | closed | 0 | 1 | 2020-08-06T15:45:54Z | 2021-01-31T03:34:55Z | 2021-01-31T03:34:54Z | MEMBER | Downstream issue: https://github.com/xarray-contrib/cf-xarray/issues/57 Example: no reprs displayed in https://cf-xarray.readthedocs.io/en/latest/examples/introduction.html @benbovy's diagnosis:
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4320/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
771295760 | MDU6SXNzdWU3NzEyOTU3NjA= | 4713 | mamba on RTD | dcherian 2448579 | closed | 0 | 6 | 2020-12-19T03:43:50Z | 2020-12-21T21:19:47Z | 2020-12-21T21:19:47Z | MEMBER | RTD now supports using mamba instead of conda using a feature flag : https://docs.readthedocs.io/en/latest/guides/feature-flags.html#available-flags Maybe it's worth seeing if this will reduce docs build time on CI? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4713/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
766926186 | MDU6SXNzdWU3NjY5MjYxODY= | 4693 | codecov coverage dropped | dcherian 2448579 | closed | 0 | 2 | 2020-12-14T21:03:47Z | 2020-12-20T00:48:43Z | 2020-12-20T00:48:43Z | MEMBER | Looks like something went wrong when #4408 was merged (https://github.com/pydata/xarray/commit/23dc2fc9f2785c348ff821bf2da61dfa2206d283) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4693/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
484955475 | MDU6SXNzdWU0ODQ5NTU0NzU= | 3263 | test_sparse doesn't work with pytest-xdist | dcherian 2448579 | closed | 0 | 0 | 2019-08-25T17:30:51Z | 2020-12-17T22:33:46Z | 2020-12-17T22:33:46Z | MEMBER |
``` ====================================================================================== ERRORS ====================================================================================== ___________ ERROR collecting gw0 ___________ Different tests were collected between gw1 and gw0. The difference is: --- gw1 +++ gw0 @@ -11,7 +11,7 @@ xarray/tests/test_sparse.py::test_variable_method[obj.any((), {})-False] xarray/tests/test_sparse.py::test_variable_method[obj.astype((), {'dtype': <class 'int'>})-True] xarray/tests/test_sparse.py::test_variable_method[obj.clip(*(), {'min': 0, 'max': 1})-True] -xarray/tests/test_sparse.py::test_variable_method[obj.coarsen((), {'windows': {'x': 2}, 'func': <function sum at 0x7fc7303f7d08>})-True] +xarray/tests/test_sparse.py::test_variable_method[obj.coarsen((), {'windows': {'x': 2}, 'func': <function sum at 0x7f6009fa4d08>})-True] xarray/tests/test_sparse.py::test_variable_method[obj.compute(*(), {})-True] xarray/tests/test_sparse.py::test_variable_method[obj.conj((), {})-True] xarray/tests/test_sparse.py::test_variable_method[obj.copy((), **{})-True] @@ -49,7 +49,7 @@ xarray/tests/test_sparse.py::test_variable_method[obj.prod((), {})-False] xarray/tests/test_sparse.py::test_variable_method[obj.quantile((), {'q': 0.5})-True] xarray/tests/test_sparse.py::test_variable_method[obj.rank(*(), {'dim': 'x'})-False] -xarray/tests/test_sparse.py::test_variable_method[obj.reduce((), {'func': <function sum at 0x7fc7303f7d08>, 'dim': 'x'})-True] +xarray/tests/test_sparse.py::test_variable_method[obj.reduce((), {'func': <function sum at 0x7f6009fa4d08>, 'dim': 'x'})-True] xarray/tests/test_sparse.py::test_variable_method[obj.rolling_window(*(), {'dim': 'x', 'window': 2, 'window_dim': 'x_win'})-True] xarray/tests/test_sparse.py::test_variable_method[obj.shift((), {'x': 2})-True] xarray/tests/test_sparse.py::test_variable_method[obj.std((), **{})-False] @@ -144,11 +144,11 @@ xarray/tests/test_sparse.py::test_dataarray_method[obj.median((), {})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.min((), {})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.notnull(*(), {})-False] -xarray/tests/test_sparse.py::test_dataarray_method[obj.pipe((<function sum at 0x7fc7303f7d08>,), {'axis': 1})-True] +xarray/tests/test_sparse.py::test_dataarray_method[obj.pipe((<function sum at 0x7f6009fa4d08>,), {'axis': 1})-True] xarray/tests/test_sparse.py::test_dataarray_method[obj.prod(*(), {})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.quantile((), {'q': 0.5})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.rank(('x',), {})-False] -xarray/tests/test_sparse.py::test_dataarray_method[obj.reduce(*(<function sum at 0x7fc7303f7d08>,), {'dim': 'x'})-False] +xarray/tests/test_sparse.py::test_dataarray_method[obj.reduce((<function sum at 0x7f6009fa4d08>,), {'dim': 'x'})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.reindex_like((<xarray.DataArray 'test' (x: 10, y: 5)>\n<COO: shape=(10, 5), dtype=float64, nnz=5, fill_value=0.0>\nCoordinates:\n * x (x) float64 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5\n * y (y) float64 0.5 1.5 2.5 3.5 4.5,), {})-True] xarray/tests/test_sparse.py::test_dataarray_method[obj.roll(*(), {'x': 2})-True] xarray/tests/test_sparse.py::test_dataarray_method[obj.sel((), *{'x': [0, 1, 2], 'y': [2, 3]})-True] ___________ ERROR collecting gw2 ___________ Different tests were collected between gw1 and gw2. The difference is: --- gw1 +++ gw2 @@ -11,7 +11,7 @@ xarray/tests/test_sparse.py::test_variable_method[obj.any((), {})-False] xarray/tests/test_sparse.py::test_variable_method[obj.astype((), {'dtype': <class 'int'>})-True] xarray/tests/test_sparse.py::test_variable_method[obj.clip(*(), {'min': 0, 'max': 1})-True] -xarray/tests/test_sparse.py::test_variable_method[obj.coarsen((), {'windows': {'x': 2}, 'func': <function sum at 0x7fc7303f7d08>})-True] +xarray/tests/test_sparse.py::test_variable_method[obj.coarsen((), {'windows': {'x': 2}, 'func': <function sum at 0x7f657c314d08>})-True] xarray/tests/test_sparse.py::test_variable_method[obj.compute(*(), {})-True] xarray/tests/test_sparse.py::test_variable_method[obj.conj((), {})-True] xarray/tests/test_sparse.py::test_variable_method[obj.copy((), **{})-True] @@ -49,7 +49,7 @@ xarray/tests/test_sparse.py::test_variable_method[obj.prod((), {})-False] xarray/tests/test_sparse.py::test_variable_method[obj.quantile((), {'q': 0.5})-True] xarray/tests/test_sparse.py::test_variable_method[obj.rank(*(), {'dim': 'x'})-False] -xarray/tests/test_sparse.py::test_variable_method[obj.reduce((), {'func': <function sum at 0x7fc7303f7d08>, 'dim': 'x'})-True] +xarray/tests/test_sparse.py::test_variable_method[obj.reduce((), {'func': <function sum at 0x7f657c314d08>, 'dim': 'x'})-True] xarray/tests/test_sparse.py::test_variable_method[obj.rolling_window(*(), {'dim': 'x', 'window': 2, 'window_dim': 'x_win'})-True] xarray/tests/test_sparse.py::test_variable_method[obj.shift((), {'x': 2})-True] xarray/tests/test_sparse.py::test_variable_method[obj.std((), **{})-False] @@ -118,7 +118,7 @@ xarray/tests/test_sparse.py::test_dataarray_method[obj.sel((), {'x': [0, 1, 2]})-True] xarray/tests/test_sparse.py::test_dataarray_method[obj.shift((), {})-True] xarray/tests/test_sparse.py::test_dataarray_method[obj.sortby(*('x',), {'ascending': False})-True] -xarray/tests/test_sparse.py::test_dataarray_method[obj.stack((), {'z': {'y', 'x'}})-True] +xarray/tests/test_sparse.py::test_dataarray_method[obj.stack((), {'z': {'x', 'y'}})-True] xarray/tests/test_sparse.py::test_dataarray_method[obj.transpose(*(), {})-True] xarray/tests/test_sparse.py::test_dataarray_method[obj.broadcast_equals((<xarray.Variable (x: 10, y: 5)>\n<COO: shape=(10, 5), dtype=float64, nnz=5, fill_value=0.0>,), {})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.equals((<xarray.Variable (x: 10, y: 5)>\n<COO: shape=(10, 5), dtype=float64, nnz=5, fill_value=0.0>,), **{})-False] @@ -144,11 +144,11 @@ xarray/tests/test_sparse.py::test_dataarray_method[obj.median((), {})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.min((), {})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.notnull(*(), {})-False] -xarray/tests/test_sparse.py::test_dataarray_method[obj.pipe((<function sum at 0x7fc7303f7d08>,), {'axis': 1})-True] +xarray/tests/test_sparse.py::test_dataarray_method[obj.pipe((<function sum at 0x7f657c314d08>,), {'axis': 1})-True] xarray/tests/test_sparse.py::test_dataarray_method[obj.prod(*(), {})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.quantile((), {'q': 0.5})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.rank(('x',), {})-False] -xarray/tests/test_sparse.py::test_dataarray_method[obj.reduce(*(<function sum at 0x7fc7303f7d08>,), {'dim': 'x'})-False] +xarray/tests/test_sparse.py::test_dataarray_method[obj.reduce((<function sum at 0x7f657c314d08>,), {'dim': 'x'})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.reindex_like((<xarray.DataArray 'test' (x: 10, y: 5)>\n<COO: shape=(10, 5), dtype=float64, nnz=5, fill_value=0.0>\nCoordinates:\n * x (x) float64 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5\n * y (y) float64 0.5 1.5 2.5 3.5 4.5,), {})-True] xarray/tests/test_sparse.py::test_dataarray_method[obj.roll(*(), {'x': 2})-True] xarray/tests/test_sparse.py::test_dataarray_method[obj.sel((), *{'x': [0, 1, 2], 'y': [2, 3]})-True] ___________ ERROR collecting gw3 ___________ Different tests were collected between gw1 and gw3. The difference is: --- gw1 +++ gw3 @@ -11,7 +11,7 @@ xarray/tests/test_sparse.py::test_variable_method[obj.any((), {})-False] xarray/tests/test_sparse.py::test_variable_method[obj.astype((), {'dtype': <class 'int'>})-True] xarray/tests/test_sparse.py::test_variable_method[obj.clip(*(), {'min': 0, 'max': 1})-True] -xarray/tests/test_sparse.py::test_variable_method[obj.coarsen((), {'windows': {'x': 2}, 'func': <function sum at 0x7fc7303f7d08>})-True] +xarray/tests/test_sparse.py::test_variable_method[obj.coarsen((), {'windows': {'x': 2}, 'func': <function sum at 0x7f6f284e3d08>})-True] xarray/tests/test_sparse.py::test_variable_method[obj.compute(*(), {})-True] xarray/tests/test_sparse.py::test_variable_method[obj.conj((), {})-True] xarray/tests/test_sparse.py::test_variable_method[obj.copy((), **{})-True] @@ -49,7 +49,7 @@ xarray/tests/test_sparse.py::test_variable_method[obj.prod((), {})-False] xarray/tests/test_sparse.py::test_variable_method[obj.quantile((), {'q': 0.5})-True] xarray/tests/test_sparse.py::test_variable_method[obj.rank(*(), {'dim': 'x'})-False] -xarray/tests/test_sparse.py::test_variable_method[obj.reduce((), {'func': <function sum at 0x7fc7303f7d08>, 'dim': 'x'})-True] +xarray/tests/test_sparse.py::test_variable_method[obj.reduce((), {'func': <function sum at 0x7f6f284e3d08>, 'dim': 'x'})-True] xarray/tests/test_sparse.py::test_variable_method[obj.rolling_window(*(), {'dim': 'x', 'window': 2, 'window_dim': 'x_win'})-True] xarray/tests/test_sparse.py::test_variable_method[obj.shift((), {'x': 2})-True] xarray/tests/test_sparse.py::test_variable_method[obj.std((), **{})-False] @@ -144,11 +144,11 @@ xarray/tests/test_sparse.py::test_dataarray_method[obj.median((), {})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.min((), {})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.notnull(*(), {})-False] -xarray/tests/test_sparse.py::test_dataarray_method[obj.pipe((<function sum at 0x7fc7303f7d08>,), {'axis': 1})-True] +xarray/tests/test_sparse.py::test_dataarray_method[obj.pipe((<function sum at 0x7f6f284e3d08>,), {'axis': 1})-True] xarray/tests/test_sparse.py::test_dataarray_method[obj.prod(*(), {})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.quantile((), {'q': 0.5})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.rank(('x',), {})-False] -xarray/tests/test_sparse.py::test_dataarray_method[obj.reduce(*(<function sum at 0x7fc7303f7d08>,), {'dim': 'x'})-False] +xarray/tests/test_sparse.py::test_dataarray_method[obj.reduce((<function sum at 0x7f6f284e3d08>,), {'dim': 'x'})-False] xarray/tests/test_sparse.py::test_dataarray_method[obj.reindex_like((<xarray.DataArray 'test' (x: 10, y: 5)>\n<COO: shape=(10, 5), dtype=float64, nnz=5, fill_value=0.0>\nCoordinates:\n * x (x) float64 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5\n * y (y) float64 0.5 1.5 2.5 3.5 4.5,), {})-True] xarray/tests/test_sparse.py::test_dataarray_method[obj.roll(*(), {'x': 2})-True] xarray/tests/test_sparse.py::test_dataarray_method[obj.sel((), *{'x': [0, 1, 2], 'y': [2, 3]})-True] ================================================================================= warnings summary ================================================================================= /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/client.py:2 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/client.py:2 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/client.py:2 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/client.py:2 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/client.py:2: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import defaultdict, Iterator /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/publish.py:1 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/publish.py:1 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/publish.py:1 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/publish.py:1 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/publish.py:1: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import MutableMapping /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/scheduler.py:2 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/scheduler.py:2 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/scheduler.py:2 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/scheduler.py:2 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/scheduler.py:2 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/scheduler.py:2 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/scheduler.py:2 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/scheduler.py:2 /home/deepak/miniconda3/envs/dcpy/lib/python3.7/site-packages/distributed/scheduler.py:2: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import defaultdict, deque, OrderedDict, Mapping, Set -- Docs: https://docs.pytest.org/en/latest/warnings.html``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3263/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
665250379 | MDU6SXNzdWU2NjUyNTAzNzk= | 4266 | docstrings for groupby reductions don't work in IPython | dcherian 2448579 | closed | 0 | 2 | 2020-07-24T15:36:26Z | 2020-11-25T23:55:18Z | 2020-11-25T23:55:18Z | MEMBER | In IPython,
BUT this does work.
Parametersdim : str or sequence of str, optional
Dimension(s) over which to apply ... ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4266/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
722539100 | MDU6SXNzdWU3MjI1MzkxMDA= | 4515 | show dimension coordinates at top of coordinates repr | dcherian 2448579 | closed | 0 | 1 | 2020-10-15T17:44:28Z | 2020-11-06T18:49:55Z | 2020-11-06T18:49:55Z | MEMBER | Is your feature request related to a problem? Please describe.
I have datasets with lots of non-dim coord variables. Its annoying to search through and look at the dimension coordinates to get an idea of what subset of data I am looking at.
Describe the solution you'd like I think we should show dimension coordinate variables at the top of the coordinates repr. Example code
Related #4409 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4515/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
435330735 | MDU6SXNzdWU0MzUzMzA3MzU= | 2909 | docs questions from new user | dcherian 2448579 | closed | 0 | 2 | 2019-04-19T23:29:35Z | 2020-10-13T04:06:14Z | 2020-10-13T04:06:14Z | MEMBER | A relatively new user here gave me an incomplete list of things they found to be confusing in the docs:
I'm crossing out things that I've started to fix. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2909/reactions", "total_count": 2, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
589583977 | MDU6SXNzdWU1ODk1ODM5Nzc= | 3908 | check index invariants in test_dataset, test_dataarray | dcherian 2448579 | closed | 0 | 5 | 2020-03-28T14:07:17Z | 2020-10-13T04:03:58Z | 2020-10-13T04:03:58Z | MEMBER | There are a large number of tests in We should switch these to be https://github.com/pydata/xarray/blob/acf7d4157ca44f05c85a92d1b914b68738988773/xarray/tests/init.py#L150-L154 Seems like an easy use of regexes for someone that knows them (i.e. not me ;)) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3908/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
550355524 | MDU6SXNzdWU1NTAzNTU1MjQ= | 3698 | dask.optimize on xarray objects | dcherian 2448579 | closed | 0 | 5 | 2020-01-15T18:29:18Z | 2020-09-20T05:21:57Z | 2020-09-20T05:21:57Z | MEMBER | I am trying to call cc @mrocklin @shoyer This works with dask arrays:
It works when a dataArray is constructed using a dask array
but fails when creating a DataArray with a numpy array and then chunking it:man_shrugging:
fails with error ``` pythonTypeError Traceback (most recent call last) <ipython-input-50-1f16efa19800> in <module> 1 da = xr.DataArray(a.compute()).chunk({"dim_0": 5}) 2 da = dask.optimize(da)[0] ----> 3 da.compute() ~/python/xarray/xarray/core/dataarray.py in compute(self, kwargs) 838 """ 839 new = self.copy(deep=False) --> 840 return new.load(kwargs) 841 842 def persist(self, **kwargs) -> "DataArray": ~/python/xarray/xarray/core/dataarray.py in load(self, kwargs) 812 dask.array.compute 813 """ --> 814 ds = self._to_temp_dataset().load(kwargs) 815 new = self._from_temp_dataset(ds) 816 self._variable = new._variable ~/python/xarray/xarray/core/dataset.py in load(self, kwargs) 659 660 # evaluate all the dask arrays simultaneously --> 661 evaluated_data = da.compute(*lazy_data.values(), kwargs) 662 663 for k, data in zip(lazy_data, evaluated_data): ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/base.py in compute(args, kwargs) 434 keys = [x.dask_keys() for x in collections] 435 postcomputes = [x.dask_postcompute() for x in collections] --> 436 results = schedule(dsk, keys, kwargs) 437 return repack([f(r, a) for r, (f, a) in zip(results, postcomputes)]) 438 ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/threaded.py in get(dsk, result, cache, num_workers, pool, kwargs) 79 get_id=_thread_get_id, 80 pack_exception=pack_exception, ---> 81 kwargs 82 ) 83 ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/local.py in get_async(apply_async, num_workers, dsk, result, cache, get_id, rerun_exceptions_locally, pack_exception, raise_exception, callbacks, dumps, loads, **kwargs) 484 _execute_task(task, data) # Re-execute locally 485 else: --> 486 raise_exception(exc, tb) 487 res, worker_id = loads(res_info) 488 state["cache"][key] = res ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/local.py in reraise(exc, tb) 314 if exc.traceback is not tb: 315 raise exc.with_traceback(tb) --> 316 raise exc 317 318 ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/local.py in execute_task(key, task_info, dumps, loads, get_id, pack_exception) 220 try: 221 task, data = loads(task_info) --> 222 result = _execute_task(task, data) 223 id = get_id() 224 result = dumps((result, id)) ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/core.py in _execute_task(arg, cache, dsk) 117 func, args = arg[0], arg[1:] 118 args2 = [_execute_task(a, cache) for a in args] --> 119 return func(*args2) 120 elif not ishashable(arg): 121 return arg TypeError: string indices must be integers ``` And a different error when rechunking a dask-backed DataArray
``` pythonIndexError Traceback (most recent call last) <ipython-input-55-d978bbb9e38d> in <module> 1 da = xr.DataArray(a).chunk({"dim_0": 5}) 2 da = dask.optimize(da)[0] ----> 3 da.compute() ~/python/xarray/xarray/core/dataarray.py in compute(self, kwargs) 838 """ 839 new = self.copy(deep=False) --> 840 return new.load(kwargs) 841 842 def persist(self, **kwargs) -> "DataArray": ~/python/xarray/xarray/core/dataarray.py in load(self, kwargs) 812 dask.array.compute 813 """ --> 814 ds = self._to_temp_dataset().load(kwargs) 815 new = self._from_temp_dataset(ds) 816 self._variable = new._variable ~/python/xarray/xarray/core/dataset.py in load(self, kwargs) 659 660 # evaluate all the dask arrays simultaneously --> 661 evaluated_data = da.compute(*lazy_data.values(), kwargs) 662 663 for k, data in zip(lazy_data, evaluated_data): ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/base.py in compute(args, kwargs) 434 keys = [x.dask_keys() for x in collections] 435 postcomputes = [x.dask_postcompute() for x in collections] --> 436 results = schedule(dsk, keys, kwargs) 437 return repack([f(r, a) for r, (f, a) in zip(results, postcomputes)]) 438 ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/threaded.py in get(dsk, result, cache, num_workers, pool, kwargs) 79 get_id=_thread_get_id, 80 pack_exception=pack_exception, ---> 81 kwargs 82 ) 83 ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/local.py in get_async(apply_async, num_workers, dsk, result, cache, get_id, rerun_exceptions_locally, pack_exception, raise_exception, callbacks, dumps, loads, **kwargs) 484 _execute_task(task, data) # Re-execute locally 485 else: --> 486 raise_exception(exc, tb) 487 res, worker_id = loads(res_info) 488 state["cache"][key] = res ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/local.py in reraise(exc, tb) 314 if exc.traceback is not tb: 315 raise exc.with_traceback(tb) --> 316 raise exc 317 318 ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/local.py in execute_task(key, task_info, dumps, loads, get_id, pack_exception) 220 try: 221 task, data = loads(task_info) --> 222 result = _execute_task(task, data) 223 id = get_id() 224 result = dumps((result, id)) ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/core.py in _execute_task(arg, cache, dsk) 117 func, args = arg[0], arg[1:] 118 args2 = [_execute_task(a, cache) for a in args] --> 119 return func(*args2) 120 elif not ishashable(arg): 121 return arg ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/array/core.py in concatenate3(arrays) 4305 if not ndim: 4306 return arrays -> 4307 chunks = chunks_from_arrays(arrays) 4308 shape = tuple(map(sum, chunks)) 4309 ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/array/core.py in chunks_from_arrays(arrays) 4085 4086 while isinstance(arrays, (list, tuple)): -> 4087 result.append(tuple([shape(deepfirst(a))[dim] for a in arrays])) 4088 arrays = arrays[0] 4089 dim += 1 ~/miniconda3/envs/dcpy_updated/lib/python3.7/site-packages/dask/array/core.py in <listcomp>(.0) 4085 4086 while isinstance(arrays, (list, tuple)): -> 4087 result.append(tuple([shape(deepfirst(a))[dim] for a in arrays])) 4088 arrays = arrays[0] 4089 dim += 1 IndexError: tuple index out of range ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3698/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
630062936 | MDU6SXNzdWU2MzAwNjI5MzY= | 4120 | coarsen deletes attrs on original object | dcherian 2448579 | closed | 0 | 13 | 2020-06-03T14:50:16Z | 2020-09-09T19:30:42Z | 2020-09-09T18:56:36Z | MEMBER | MCVE Code Sample```python Your code hereimport xarray as xr ds = xr.tutorial.load_dataset("air_temperature") ds2 = xr.tutorial.load_dataset("air_temperature") xr.testing.assert_identical(ds, ds2) # passes ds.coarsen(lat=5).mean() xr.testing.assert_identical(ds, ds2) # fails ``` Bug: ``` AssertionErrorTraceback (most recent call last) <ipython-input-21-b0a179f01c99> in <module> 48 xr.testing.assert_identical(ds, ds2) 49 ds.coarsen(lat=5).mean() ---> 50 xr.testing.assert_identical(ds, ds2) ~/work/python/xarray/xarray/testing.py in assert_identical(a, b) 87 assert a.identical(b), formatting.diff_array_repr(a, b, "identical") 88 elif isinstance(a, (Dataset, Variable)): ---> 89 assert a.identical(b), formatting.diff_dataset_repr(a, b, "identical") 90 else: 91 raise TypeError("{} not supported by assertion comparison".format(type(a))) AssertionError: Left and right Dataset objects are not identical Differing coordinates: L * lat (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0 R * lat (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0 standard_name: latitude long_name: Latitude units: degrees_north axis: Y Differing data variables: L air (time, lat, lon) float32 241.2 242.5 243.5 ... 296.49 296.19 295.69 R air (time, lat, lon) float32 241.2 242.5 243.5 ... 296.49 296.19 295.69 long_name: 4xDaily Air temperature at sigma level 995 units: degK precision: 2 GRIB_id: 11 GRIB_name: TMP var_desc: Air temperature dataset: NMC Reanalysis level_desc: Surface statistic: Individual Obs parent_stat: Other actual_range: [185.16 322.1 ] ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4120/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
684930038 | MDU6SXNzdWU2ODQ5MzAwMzg= | 4372 | Set `allow_rechunk=True` in `apply_ufunc` | dcherian 2448579 | closed | 0 | 10 | 2020-08-24T20:02:50Z | 2020-09-09T19:00:17Z | 2020-09-09T19:00:17Z | MEMBER | What happened:
Minimal Complete Verifiable Example: ```python import operator a = xr.DataArray(np.arange(10), dims=("a")).chunk({"a": 2}) b = xr.DataArray(np.arange(10), dims=("a")).chunk({"a": 4}) xr.apply_ufunc(operator.add, a, b, dask="parallelized", output_dtypes=[a.dtype]).compute() ``` raises
on master but works with 0.16.0 I think we need to do If we want to avoid that, we'll need to go through a deprecation cycle. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4372/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
665232266 | MDU6SXNzdWU2NjUyMzIyNjY= | 4265 | cftime plotting fails on upstream-dev | dcherian 2448579 | closed | 0 | 5 | 2020-07-24T15:07:44Z | 2020-07-27T13:13:48Z | 2020-07-26T19:04:55Z | MEMBER |
e.g. ``` =================================== FAILURES =================================== __ TestCFDatetimePlot.testcfdatetime_line_plot ___ self = <xarray.tests.test_plot.TestCFDatetimePlot object at 0x7f71d66219d0>
E ValueError: setting an array element with a sequence. The requested array would exceed the maximum number of dimension of 1. /usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/matplotlib/transforms.py:943: ValueError ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4265/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
663833847 | MDU6SXNzdWU2NjM4MzM4NDc= | 4249 | RTD PR builds are timing out | dcherian 2448579 | closed | 0 | 1 | 2020-07-22T15:04:22Z | 2020-07-22T21:17:59Z | 2020-07-22T21:17:59Z | MEMBER | See https://readthedocs.org/projects/xray/builds/ There's no useful information in the logs AFAICT: e.g. https://readthedocs.org/projects/xray/builds/11504571/ |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4249/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
612785915 | MDU6SXNzdWU2MTI3ODU5MTU= | 4031 | 0.16.0 release | dcherian 2448579 | closed | 0 | 9 | 2020-05-05T17:53:26Z | 2020-07-14T17:54:31Z | 2020-07-14T17:54:31Z | MEMBER | It'd be nice to issue a release soon. We should decide if this is a minor 0.15.2 or major 0.16.0 Please edit this list as you wish. Must-have
Nice to have
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4031/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
636665269 | MDU6SXNzdWU2MzY2NjUyNjk= | 4145 | Fix matplotlib in upstream-dev test config | dcherian 2448579 | closed | 0 | 4 | 2020-06-11T02:15:52Z | 2020-06-12T09:11:31Z | 2020-06-12T09:11:31Z | MEMBER | From @keewis comment in #4138
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4145/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
624424922 | MDU6SXNzdWU2MjQ0MjQ5MjI= | 4093 | rename_dims to an existing dimension name | dcherian 2448579 | closed | 0 | 2 | 2020-05-25T18:00:28Z | 2020-05-25T19:35:09Z | 2020-05-25T19:35:08Z | MEMBER |
This should be possible since both For indexed dimensions, should we check that the indexes are equal? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4093/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
613579881 | MDU6SXNzdWU2MTM1Nzk4ODE= | 4041 | expanded HTML repr when opening notebook | dcherian 2448579 | closed | 0 | 16 | 2020-05-06T20:06:38Z | 2020-05-20T17:06:40Z | 2020-05-20T17:06:40Z | MEMBER | When I open a notebook, the new HTML repr is "expanded": I'm running
Is anyone else seeing this? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4041/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
476222321 | MDU6SXNzdWU0NzYyMjIzMjE= | 3178 | type annotations make docs confusing | dcherian 2448579 | closed | 0 | 17 | 2019-08-02T14:57:33Z | 2020-05-19T16:49:26Z | 2020-05-19T16:49:26Z | MEMBER | The annotations make this signature basically unreadable to anyone not familiar with them. Is there a way to hide them in the documentation? Or at least change formatting so it's clearer what the function arguments are? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3178/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
617579699 | MDU6SXNzdWU2MTc1Nzk2OTk= | 4056 | flake8 failure | dcherian 2448579 | closed | 0 | 1 | 2020-05-13T16:16:20Z | 2020-05-13T17:35:46Z | 2020-05-13T17:35:46Z | MEMBER | flake8 is failing on master (https://dev.azure.com/xarray/xarray/_build/results?buildId=2820&view=logs&jobId=a577607c-d99b-546f-eeb4-2341e9a21630&j=a577607c-d99b-546f-eeb4-2341e9a21630&t=7308a173-bf34-5af1-b6d9-30c4d79bebeb) with ``` ========================== Starting Command Output =========================== /bin/bash --noprofile --norc /home/vsts/work/_temp/e6322963-dd1c-4887-ba6a-2aa7ec888f4c.sh ./xarray/backends/memory.py:43:32: E741 ambiguous variable name 'l' ./xarray/backends/common.py:244:32: E741 ambiguous variable name 'l' [error]Bash exited with code '1'.Finishing: flake8 lint checks ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4056/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
584429748 | MDU6SXNzdWU1ODQ0Mjk3NDg= | 3867 | macos py38 CI failing | dcherian 2448579 | closed | 0 | 3 | 2020-03-19T13:54:10Z | 2020-03-29T22:13:26Z | 2020-03-29T22:13:26Z | MEMBER |
```python E ImportError: dlopen(/usr/local/miniconda/envs/xarray-tests/lib/python3.8/site-packages/PIL/_imaging.cpython-38-darwin.so, 2): Library not loaded: @rpath/libwebp.7.dylib E Referenced from: /usr/local/miniconda/envs/xarray-tests/lib/libtiff.5.dylib E Reason: Incompatible library version: libtiff.5.dylib requires version 9.0.0 or later, but libwebp.7.dylib provides version 8.0.0 /usr/local/miniconda/envs/xarray-tests/lib/python3.8/site-packages/PIL/Image.py:69: ImportError ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3867/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
570190199 | MDU6SXNzdWU1NzAxOTAxOTk= | 3796 | RTD failing yet again | dcherian 2448579 | closed | 0 | 7 | 2020-02-24T22:35:52Z | 2020-03-24T22:23:00Z | 2020-03-24T22:23:00Z | MEMBER | memory consumption errors as usual. @keewis I remember you had an idea for using pip instead of conda? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3796/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
584472210 | MDU6SXNzdWU1ODQ0NzIyMTA= | 3869 | 0.15.1 release | dcherian 2448579 | closed | 0 | 12 | 2020-03-19T14:55:31Z | 2020-03-23T23:07:12Z | 2020-03-23T21:11:15Z | MEMBER | It'd be nice to issue a release by the end of March (two months since previous release) Please edit this list as you wish. Must-have - [x] #3862 error when assigning to IndexVariable.values - [x] #3840 delete index when deleting coordinate variable - [x] #3874 un-xfail the tests from #3808 (https://github.com/pydata/xarray/issues/3751#issuecomment-599231986) - [x] #3833, #3870 HTML repr with non-str keys fix (since it is now on by default) Nice to have - [ ] #3816 map_blocks template - [x] #3817 map_blocks new unindexed dimension - [ ] #3818 map_blocks dask args - [ ] #3847 assert_allclose diff - [x] #3826 ellipsis in stack - [x] #3836 where docstring - [ ] some progress on #3868 - [ ] #3594 unit support - [ ] #3871 idxmin, idxmax |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3869/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
559873728 | MDU6SXNzdWU1NTk4NzM3Mjg= | 3751 | more upstream-dev cftime failures | dcherian 2448579 | closed | 0 | 20 | 2020-02-04T17:36:03Z | 2020-03-22T15:01:36Z | 2020-03-13T06:14:41Z | MEMBER | 46 failed tests but they all seem to result from the same TypeError ``` =================================== FAILURES =================================== __ test_sel_date_scalar_nearest[365_day-sel_kwargs0] ___ da = <xarray.DataArray (time: 4)> 0002-02-01 00:00:00], dtype='object') sel_kwargs = {'method': 'nearest'}
xarray/tests/test_cftimeindex.py:460: xarray/core/dataarray.py:1056: in sel ds = self._to_temp_dataset().sel( xarray/core/dataset.py:2056: in sel pos_indexers, new_indexes = remap_label_indexers( xarray/core/coordinates.py:391: in remap_label_indexers pos_indexers, new_indexes = indexing.remap_label_indexers( xarray/core/indexing.py:270: in remap_label_indexers idxr, new_idx = convert_label_indexer(index, label, dim, method, tolerance) xarray/core/indexing.py:189: in convert_label_indexer indexer = index.get_loc( xarray/coding/cftimeindex.py:334: in get_loc return pd.Index.get_loc(self, key, method=method, tolerance=tolerance) /usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/pandas/core/indexes/base.py:2899: in get_loc indexer = self.get_indexer([key], method=method, tolerance=tolerance) /usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/pandas/core/indexes/base.py:2992: in get_indexer indexer = self._get_nearest_indexer(target, limit, tolerance) /usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/pandas/core/indexes/base.py:3076: in _get_nearest_indexer left_distances = np.abs(self[left_indexer] - target) xarray/coding/cftimeindex.py:444: in sub return CFTimeIndex(np.array(self) - other) xarray/coding/cftimeindex.py:248: in new assert_all_valid_date_type(data) data = TimedeltaIndex(['-59 days'], dtype='timedelta64[ns]', freq=None)
xarray/coding/cftimeindex.py:206: TypeError ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3751/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
582474355 | MDU6SXNzdWU1ODI0NzQzNTU= | 3861 | CI not running? | dcherian 2448579 | closed | 0 | 1 | 2020-03-16T17:23:13Z | 2020-03-17T13:18:07Z | 2020-03-17T13:18:07Z | MEMBER | Looks like the last run was on Thursday: https://dev.azure.com/xarray/xarray/_build?definitionId=1&_a=summary&view=runs No tests have been run for PRs #3826 #3836 #3858 and #3807 despite these having been updated recently. There is a workaround posted at this Azure issue: https://status.dev.azure.com/_event/179641421 but it looks like a fix is coming soon. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3861/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
526754376 | MDU6SXNzdWU1MjY3NTQzNzY= | 3558 | optimizing xarray operations for lazy array equality test | dcherian 2448579 | closed | 0 | 0 | 2019-11-21T18:01:51Z | 2020-02-24T18:26:30Z | 2020-02-24T18:26:30Z | MEMBER | TLDR: I think we want Currently if I do ``` python
Questions:
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3558/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);