issues
279 rows where state = "closed", type = "issue" and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: milestone, comments, state_reason, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
267542085 | MDU6SXNzdWUyNjc1NDIwODU= | 1647 | Representing missing values in string arrays on disk | shoyer 1217238 | closed | 0 | 3 | 2017-10-23T05:01:10Z | 2024-02-06T13:03:40Z | 2024-02-06T13:03:40Z | MEMBER | This came up as part of my clean-up of serializing unicode strings in https://github.com/pydata/xarray/pull/1648. There are two ways to represent strings in netCDF files.
Currently, by default (if no For character arrays, we could use the normal In [11]: ds Out[11]: <xarray.Dataset> Dimensions: (x: 2) Dimensions without coordinates: x Data variables: foo (x) object b'bar' nan In [12]: ds.to_netcdf('foobar.nc') In [13]: xr.open_dataset('foobar.nc').load() Out[13]: <xarray.Dataset> Dimensions: (x: 2) Dimensions without coordinates: x Data variables: foo (x) object b'bar' nan ``` For variable length strings, it currently isn't possible to set a fill-value. So there's no good way to indicate missing values, though this may change if the future depending on the resolution of the netCDF-python issue. It would obviously be nice to always automatically round-trip missing values, both for strings and bytes. I see two possible ways to do this:
1. Require setting an explicit The default option is to adopt neither of these, and keep the current behavior where missing values are written as empty strings and not decoded at all. Any opinions? I am leaning towards option (2). |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1647/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
197939448 | MDU6SXNzdWUxOTc5Mzk0NDg= | 1189 | Document using a spawning multiprocessing pool for multiprocessing with dask | shoyer 1217238 | closed | 0 | 3 | 2016-12-29T01:21:50Z | 2023-12-05T21:51:04Z | 2023-12-05T21:51:04Z | MEMBER | This is a nice option for working with in-file HFD5/netCDF4 compression: https://github.com/pydata/xarray/pull/1128#issuecomment-261936849 Mixed multi-threading/multi-processing could also be interesting, if anyone wants to revive that: https://github.com/dask/dask/pull/457 (I think it would work now that xarray data stores are pickle-able) CC @mrocklin |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1189/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
430188626 | MDU6SXNzdWU0MzAxODg2MjY= | 2873 | Dask distributed tests fail locally | shoyer 1217238 | closed | 0 | 3 | 2019-04-07T20:26:53Z | 2023-12-05T21:43:02Z | 2023-12-05T21:43:02Z | MEMBER | I'm not sure why, but when I run the integration tests with dask-distributed locally (on my MacBook pro), they fail: ``` $ pytest xarray/tests/test_distributed.py --maxfail 1 ================================================ test session starts ================================================= platform darwin -- Python 3.7.2, pytest-4.0.1, py-1.7.0, pluggy-0.8.0 rootdir: /Users/shoyer/dev/xarray, inifile: setup.cfg plugins: repeat-0.7.0 collected 19 items xarray/tests/test_distributed.py F ====================================================== FAILURES ====================================================== ____ test_dask_distributed_netcdf_roundtrip[netcdf4-NETCDF3_CLASSIC] _______ loop = <tornado.platform.asyncio.AsyncIOLoop object at 0x1c182da1d0> tmp_netcdf_filename = '/private/var/folders/15/qdcz0wqj1t9dg40m_ld0fjkh00b4kd/T/pytest-of-shoyer/pytest-3/test_dask_distributed_netcdf_r0/testfile.nc' engine = 'netcdf4', nc_format = 'NETCDF3_CLASSIC'
xarray/tests/test_distributed.py:87: ../../miniconda3/envs/xarray-py37/lib/python3.7/contextlib.py:119: in exit next(self.gen) nworkers = 2, nanny = False, worker_kwargs = {}, active_rpc_timeout = 1, scheduler_kwargs = {}
../../miniconda3/envs/xarray-py37/lib/python3.7/site-packages/distributed/utils_test.py:721: AssertionError ------------------------------------------------ Captured stderr call ------------------------------------------------ distributed.scheduler - INFO - Clear task state distributed.scheduler - INFO - Scheduler at: tcp://127.0.0.1:51715 distributed.worker - INFO - Start worker at: tcp://127.0.0.1:51718 distributed.worker - INFO - Listening to: tcp://127.0.0.1:51718 distributed.worker - INFO - Waiting to connect to: tcp://127.0.0.1:51715 distributed.worker - INFO - ------------------------------------------------- distributed.worker - INFO - Threads: 1 distributed.worker - INFO - Memory: 17.18 GB distributed.worker - INFO - Local Directory: /Users/shoyer/dev/xarray/_test_worker-5cabd1b7-4d9c-49eb-a79e-205c588f5dae/worker-n8uv72yx distributed.worker - INFO - ------------------------------------------------- distributed.worker - INFO - Start worker at: tcp://127.0.0.1:51720 distributed.worker - INFO - Listening to: tcp://127.0.0.1:51720 distributed.worker - INFO - Waiting to connect to: tcp://127.0.0.1:51715 distributed.scheduler - INFO - Register tcp://127.0.0.1:51718 distributed.worker - INFO - ------------------------------------------------- distributed.worker - INFO - Threads: 1 distributed.worker - INFO - Memory: 17.18 GB distributed.worker - INFO - Local Directory: /Users/shoyer/dev/xarray/_test_worker-71a426d4-bd34-4808-9d33-79cac2bb4801/worker-a70rlf4r distributed.worker - INFO - ------------------------------------------------- distributed.scheduler - INFO - Starting worker compute stream, tcp://127.0.0.1:51718 distributed.core - INFO - Starting established connection distributed.worker - INFO - Registered to: tcp://127.0.0.1:51715 distributed.worker - INFO - ------------------------------------------------- distributed.core - INFO - Starting established connection distributed.scheduler - INFO - Register tcp://127.0.0.1:51720 distributed.scheduler - INFO - Starting worker compute stream, tcp://127.0.0.1:51720 distributed.core - INFO - Starting established connection distributed.worker - INFO - Registered to: tcp://127.0.0.1:51715 distributed.worker - INFO - ------------------------------------------------- distributed.core - INFO - Starting established connection distributed.scheduler - INFO - Receive client connection: Client-59a7918c-5972-11e9-912a-8c85907bce57 distributed.core - INFO - Starting established connection distributed.core - INFO - Event loop was unresponsive in Worker for 1.05s. This is often caused by long-running GIL-holding functions or moving large chunks of data. This can cause timeouts and instability. distributed.scheduler - INFO - Receive client connection: Client-worker-5a5c81de-5972-11e9-9136-8c85907bce57 distributed.core - INFO - Starting established connection distributed.core - INFO - Event loop was unresponsive in Worker for 1.33s. This is often caused by long-running GIL-holding functions or moving large chunks of data. This can cause timeouts and instability. distributed.scheduler - INFO - Receive client connection: Client-worker-5b2496d8-5972-11e9-9137-8c85907bce57 distributed.core - INFO - Starting established connection distributed.scheduler - INFO - Remove client Client-59a7918c-5972-11e9-912a-8c85907bce57 distributed.scheduler - INFO - Remove client Client-59a7918c-5972-11e9-912a-8c85907bce57 distributed.scheduler - INFO - Close client connection: Client-59a7918c-5972-11e9-912a-8c85907bce57 distributed.worker - INFO - Stopping worker at tcp://127.0.0.1:51720 distributed.worker - INFO - Stopping worker at tcp://127.0.0.1:51718 distributed.scheduler - INFO - Remove worker tcp://127.0.0.1:51720 distributed.core - INFO - Removing comms to tcp://127.0.0.1:51720 distributed.scheduler - INFO - Remove worker tcp://127.0.0.1:51718 distributed.core - INFO - Removing comms to tcp://127.0.0.1:51718 distributed.scheduler - INFO - Lost all workers distributed.scheduler - INFO - Remove client Client-worker-5b2496d8-5972-11e9-9137-8c85907bce57 distributed.scheduler - INFO - Remove client Client-worker-5a5c81de-5972-11e9-9136-8c85907bce57 distributed.scheduler - INFO - Close client connection: Client-worker-5b2496d8-5972-11e9-9137-8c85907bce57 distributed.scheduler - INFO - Close client connection: Client-worker-5a5c81de-5972-11e9-9136-8c85907bce57 distributed.scheduler - INFO - Scheduler closing... distributed.scheduler - INFO - Scheduler closing all comms ``` Version info: ``` In [2]: xarray.show_versions() INSTALLED VERSIONScommit: 2ce0639ee2ba9c7b1503356965f77d847d6cfcdf python: 3.7.2 (default, Dec 29 2018, 00:00:04) [Clang 4.0.1 (tags/RELEASE_401/final)] python-bits: 64 OS: Darwin OS-release: 18.2.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.4 libnetcdf: 4.6.2 xarray: 0.12.1+4.g2ce0639e pandas: 0.24.0 numpy: 1.15.4 scipy: 1.1.0 netCDF4: 1.4.3.2 pydap: None h5netcdf: 0.7.0 h5py: 2.9.0 Nio: None zarr: 2.2.0 cftime: 1.0.3.4 nc_time_axis: None PseudonetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.2.1 dask: 1.1.5 distributed: 1.26.1 matplotlib: 3.0.2 cartopy: 0.17.0 seaborn: 0.9.0 setuptools: 40.0.0 pip: 18.0 conda: None pytest: 4.0.1 IPython: 6.5.0 sphinx: 1.8.2 ``` @mrocklin does this sort of error look familiar to you? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2873/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
not_planned | xarray 13221727 | issue | ||||||
253395960 | MDU6SXNzdWUyNTMzOTU5NjA= | 1533 | Index variables loaded from dask can be computed twice | shoyer 1217238 | closed | 0 | 6 | 2017-08-28T17:18:27Z | 2023-04-06T04:15:46Z | 2023-04-06T04:15:46Z | MEMBER | as reported by @crusaderky in #1522 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1533/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
98587746 | MDU6SXNzdWU5ODU4Nzc0Ng== | 508 | Ignore missing variables when concatenating datasets? | shoyer 1217238 | closed | 0 | 8 | 2015-08-02T06:03:57Z | 2023-01-20T16:04:28Z | 2023-01-20T16:04:28Z | MEMBER | Several users (@raj-kesavan, @richardotis, now myself) have wondered about how to concatenate xray Datasets with different variables. With the current This would also be more consistent with |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/508/reactions", "total_count": 6, "+1": 6, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
623804131 | MDU6SXNzdWU2MjM4MDQxMzE= | 4090 | Error with indexing 2D lat/lon coordinates | shoyer 1217238 | closed | 0 | 2 | 2020-05-24T06:19:45Z | 2022-09-28T12:06:03Z | 2022-09-28T12:06:03Z | MEMBER | ``` filslp = "ChonghuaYinData/prmsl.mon.mean.nc" filtmp = "ChonghuaYinData/air.sig995.mon.mean.nc" filprc = "ChonghuaYinData/precip.mon.mean.nc" ds_slp = xr.open_dataset(filslp).sel(time=slice(str(yrStrt)+'-01-01', str(yrLast)+'-12-31')) ds_slp
``` yrStrt = 1950 # manually specify for convenience yrLast = 2018 # 20th century ends 2018 clStrt = 1950 # reference climatology for SOI clLast = 1979 yrStrtP = 1979 # 1st year GPCP yrLastP = yrLast # match 20th century latT = -17.6 # Tahiti
lonT = 210.75 select grids of T and DT = ds_slp.sel(lat=latT, lon=lonT, method='nearest')
D = ds_slp.sel(lat=latD, lon=lonD, method='nearest')
ValueError Traceback (most recent call last) <ipython-input-27-6702b30f473f> in <module> 1 # select grids of T and D ----> 2 T = ds_slp.sel(lat=latT, lon=lonT, method='nearest') 3 D = ds_slp.sel(lat=latD, lon=lonD, method='nearest') ~\Anaconda3\lib\site-packages\xarray\core\dataset.py in sel(self, indexers, method, tolerance, drop, **indexers_kwargs) 2004 indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "sel") 2005 pos_indexers, new_indexes = remap_label_indexers( -> 2006 self, indexers=indexers, method=method, tolerance=tolerance 2007 ) 2008 result = self.isel(indexers=pos_indexers, drop=drop) ~\Anaconda3\lib\site-packages\xarray\core\coordinates.py in remap_label_indexers(obj, indexers, method, tolerance, **indexers_kwargs) 378 379 pos_indexers, new_indexes = indexing.remap_label_indexers( --> 380 obj, v_indexers, method=method, tolerance=tolerance 381 ) 382 # attach indexer's coordinate to pos_indexers ~\Anaconda3\lib\site-packages\xarray\core\indexing.py in remap_label_indexers(data_obj, indexers, method, tolerance) 257 new_indexes = {} 258 --> 259 dim_indexers = get_dim_indexers(data_obj, indexers) 260 for dim, label in dim_indexers.items(): 261 try: ~\Anaconda3\lib\site-packages\xarray\core\indexing.py in get_dim_indexers(data_obj, indexers) 223 ] 224 if invalid: --> 225 raise ValueError("dimensions or multi-index levels %r do not exist" % invalid) 226 227 level_indexers = defaultdict(dict) ValueError: dimensions or multi-index levels ['lat', 'lon'] do not exist ``` Does any know how fix to this problem?Thank you very much. Originally posted by @JimmyGao0204 in https://github.com/pydata/xarray/issues/475#issuecomment-633172787 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4090/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1210147360 | I_kwDOAMm_X85IIWIg | 6504 | test_weighted.test_weighted_operations_nonequal_coords should avoid depending on random number seed | shoyer 1217238 | closed | 0 | shoyer 1217238 | 0 | 2022-04-20T19:56:19Z | 2022-08-29T20:42:30Z | 2022-08-29T20:42:30Z | MEMBER | What happened?In testing an upgrade to the latest version of xarray in our systems, I noticed this test failing: ``` def test_weighted_operations_nonequal_coords(): # There are no weights for a == 4, so that data point is ignored. weights = DataArray(np.random.randn(4), dims=("a",), coords=dict(a=[0, 1, 2, 3])) data = DataArray(np.random.randn(4), dims=("a",), coords=dict(a=[1, 2, 3, 4])) check_weighted_operations(data, weights, dim="a", skipna=None)
It appears that this test is hard-coded to match a particular random number seed, which in turn would fix the resutls of What did you expect to happen?Whenever possible, Xarray's own tests should avoid relying on particular random number generators, e.g., in this case we could specify random numbers instead. A back-up option would be to explicitly set random seed locally inside the tests, e.g., by creating a Minimal Complete Verifiable ExampleNo response Relevant log outputNo response Anything else we need to know?No response Environment... |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6504/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | |||||
1210267320 | I_kwDOAMm_X85IIza4 | 6505 | Dropping a MultiIndex variable raises an error after explicit indexes refactor | shoyer 1217238 | closed | 0 | 3 | 2022-04-20T22:07:26Z | 2022-07-21T14:46:58Z | 2022-07-21T14:46:58Z | MEMBER | What happened?With the latest released version of Xarray, it is possible to delete all variables corresponding to a MultiIndex by simply deleting the name of the MultiIndex. After the explicit indexes refactor (i.e,. using the "main" development branch) this now raises error about how this would "corrupt" index state. This comes up when using This is not hard to work around, but we may want to consider this bug a blocker for the next Xarray release. I found the issue surfaced in several projects when attempting to use the new version of Xarray inside Google's codebase. CC @benbovy in case you have any thoughts to share. What did you expect to happen?For now, we should preserve the behavior of deleting the variables corresponding to MultiIndex levels, but should issue a deprecation warning encouraging users to explicitly delete everything. Minimal Complete Verifiable Example```Python import xarray array = xarray.DataArray( [[1, 2], [3, 4]], dims=['x', 'y'], coords={'x': ['a', 'b']}, ) stacked = array.stack(z=['x', 'y']) print(stacked.drop('z')) print() print(stacked.assign_coords(z=[1, 2, 3, 4])) ``` Relevant log output```Python ValueError Traceback (most recent call last) Input In [1], in <cell line: 9>() 3 array = xarray.DataArray( 4 [[1, 2], [3, 4]], 5 dims=['x', 'y'], 6 coords={'x': ['a', 'b']}, 7 ) 8 stacked = array.stack(z=['x', 'y']) ----> 9 print(stacked.drop('z')) 10 print() 11 print(stacked.assign_coords(z=[1, 2, 3, 4])) File ~/dev/xarray/xarray/core/dataarray.py:2425, in DataArray.drop(self, labels, dim, errors, labels_kwargs)
2408 def drop(
2409 self,
2410 labels: Mapping = None,
(...)
2414 labels_kwargs,
2415 ) -> DataArray:
2416 """Backward compatible method based on File ~/dev/xarray/xarray/core/dataset.py:4590, in Dataset.drop(self, labels, dim, errors, **labels_kwargs)
4584 if dim is None and (is_scalar(labels) or isinstance(labels, Iterable)):
4585 warnings.warn(
4586 "dropping variables using File ~/dev/xarray/xarray/core/dataset.py:4549, in Dataset.drop_vars(self, names, errors) 4546 if errors == "raise": 4547 self._assert_all_in_dataset(names) -> 4549 assert_no_index_corrupted(self.xindexes, names) 4551 variables = {k: v for k, v in self._variables.items() if k not in names} 4552 coord_names = {k for k in self._coord_names if k in variables} File ~/dev/xarray/xarray/core/indexes.py:1394, in assert_no_index_corrupted(indexes, coord_names) 1392 common_names_str = ", ".join(f"{k!r}" for k in common_names) 1393 index_names_str = ", ".join(f"{k!r}" for k in index_coords) -> 1394 raise ValueError( 1395 f"cannot remove coordinate(s) {common_names_str}, which would corrupt " 1396 f"the following index built from coordinates {index_names_str}:\n" 1397 f"{index}" 1398 ) ValueError: cannot remove coordinate(s) 'z', which would corrupt the following index built from coordinates 'z', 'x', 'y': <xarray.core.indexes.PandasMultiIndex object at 0x148c95150> ``` Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: 33cdabd261b5725ac357c2823bd0f33684d3a954
python: 3.10.4 | packaged by conda-forge | (main, Mar 24 2022, 17:42:03) [Clang 12.0.1 ]
python-bits: 64
OS: Darwin
OS-release: 21.4.0
machine: arm64
processor: arm
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.1
libnetcdf: 4.8.1
xarray: 0.18.3.dev137+g96c56836
pandas: 1.4.2
numpy: 1.22.3
scipy: 1.8.0
netCDF4: 1.5.8
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: 2.11.3
cftime: 1.6.0
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: 2022.04.1
distributed: 2022.4.1
matplotlib: None
cartopy: None
seaborn: None
numbagg: None
fsspec: 2022.3.0
cupy: None
pint: None
sparse: None
setuptools: 62.1.0
pip: 22.0.4
conda: None
pytest: 7.1.1
IPython: 8.2.0
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6505/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
711626733 | MDU6SXNzdWU3MTE2MjY3MzM= | 4473 | Wrap numpy-groupies to speed up Xarray's groupby aggregations | shoyer 1217238 | closed | 0 | 8 | 2020-09-30T04:43:04Z | 2022-05-15T02:38:29Z | 2022-05-15T02:38:29Z | MEMBER | Is your feature request related to a problem? Please describe. Xarray's groupby aggregations (e.g., Describe the solution you'd like We could speed things up considerably (easily 100x) by wrapping the numpy-groupies package. Additional context One challenge is how to handle dask arrays (and other duck arrays). In some cases it might make sense to apply the numpy-groupies function (using apply_ufunc), but in other cases it might be better to stick with the current indexing + concatenate solution. We could either pick some simple heuristics for choosing the algorithm to use on dask arrays, or could just stick with the current algorithm for now. In particular, it might make sense to stick with the current algorithm if there are a many chunks in the arrays to aggregated along the "grouped" dimension (depending on the size of the unique group values). |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4473/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
621123222 | MDU6SXNzdWU2MjExMjMyMjI= | 4081 | Wrap "Dimensions" onto multiple lines in xarray.Dataset repr? | shoyer 1217238 | closed | 0 | 4 | 2020-05-19T16:31:59Z | 2022-04-29T19:59:24Z | 2022-04-29T19:59:24Z | MEMBER | Here's an example dataset of a large dataset from @alimanfoo:
https://nbviewer.jupyter.org/gist/alimanfoo/b74b08465727894538d5b161b3ced764
I know similarly large datasets with lots of dimensions come up in other contexts as well, e.g., with geophysical model output. That's a very long first line! This would be easier to read as:
or maybe:
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4081/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
205455788 | MDU6SXNzdWUyMDU0NTU3ODg= | 1251 | Consistent naming for xarray's methods that apply functions | shoyer 1217238 | closed | 0 | 13 | 2017-02-05T21:27:24Z | 2022-04-27T20:06:25Z | 2022-04-27T20:06:25Z | MEMBER | We currently have two types of methods that take a function to apply to xarray objects:
- And one more method that we want to add but isn't finalized yet -- currently named I'd like to have three distinct names that makes it clear what these methods do and how they are different. This has come up a few times recently, e.g., https://github.com/pydata/xarray/issues/1130 One proposal: rename |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1251/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
864249974 | MDU6SXNzdWU4NjQyNDk5NzQ= | 5202 | Make creating a MultiIndex in stack optional | shoyer 1217238 | closed | 0 | 7 | 2021-04-21T20:21:03Z | 2022-03-17T17:11:42Z | 2022-03-17T17:11:42Z | MEMBER | As @Hoeze notes in https://github.com/pydata/xarray/issues/5179, calling This is true with how Regardless of how we define the semantics for boolean indexing (https://github.com/pydata/xarray/issues/1887), it seems like it could be a good idea to allow stack to skip creating a MultiIndex for the new dimension, via a new keyword argument such as |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5202/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
874292512 | MDU6SXNzdWU4NzQyOTI1MTI= | 5251 | Switch default for Zarr reading/writing to consolidated=True? | shoyer 1217238 | closed | 0 | 4 | 2021-05-03T06:59:42Z | 2021-08-30T15:21:11Z | 2021-08-30T15:21:11Z | MEMBER | Consolidated metadata was a new feature in Zarr v2.3, which was released over two year ago (March 22, 2019). Since then, I have used I wonder if consolidated metadata is mature enough now that we could consider switching the default behavior in Xarray. From my perspective, this is a big "gotcha" for getting good performance with Zarr. More than one of my colleagues has been unimpressed with the performance of Zarr until they learned to set I would suggest doing this in way is almost entirely backwards compatible, with only a minor performance costs for reading non-consolidated datasets:
- CC @rabernat |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5251/reactions", "total_count": 11, "+1": 11, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
928402742 | MDU6SXNzdWU5Mjg0MDI3NDI= | 5516 | Rename master branch -> main | shoyer 1217238 | closed | 0 | 4 | 2021-06-23T15:45:57Z | 2021-07-23T21:58:39Z | 2021-07-23T21:58:39Z | MEMBER | This is a best practice for inclusive projects. See https://github.com/github/renaming for guidance. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5516/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
890534794 | MDU6SXNzdWU4OTA1MzQ3OTQ= | 5295 | Engine is no longer inferred for filenames not ending in ".nc" | shoyer 1217238 | closed | 0 | 0 | 2021-05-12T22:28:46Z | 2021-07-15T14:57:54Z | 2021-05-14T22:40:14Z | MEMBER | This works with xarray=0.17.0:
On xarray 0.18.0, it fails: ``` ValueError Traceback (most recent call last) <ipython-input-1-20e128a730aa> in <module>() 2 3 xarray.Dataset({'x': [1, 2, 3]}).to_netcdf('tmp') ----> 4 xarray.open_dataset('tmp') /usr/local/lib/python3.7/dist-packages/xarray/backends/api.py in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, backend_kwargs, args, *kwargs) 483 484 if engine is None: --> 485 engine = plugins.guess_engine(filename_or_obj) 486 487 backend = plugins.get_backend(engine) /usr/local/lib/python3.7/dist-packages/xarray/backends/plugins.py in guess_engine(store_spec) 110 warnings.warn(f"{engine!r} fails while guessing", RuntimeWarning) 111 --> 112 raise ValueError("cannot guess the engine, try passing one explicitly") 113 114 ValueError: cannot guess the engine, try passing one explicitly ``` I'm not entirely sure what changed. My guess is that we used to fall-back to trying to use SciPy, but don't do that anymore. A potential fix would be reading strings as filenames in |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5295/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
891281614 | MDU6SXNzdWU4OTEyODE2MTQ= | 5302 | Suggesting specific IO backends to install when open_dataset() fails | shoyer 1217238 | closed | 0 | 3 | 2021-05-13T18:45:28Z | 2021-06-23T08:18:07Z | 2021-06-23T08:18:07Z | MEMBER | Currently, Xarray's internal backends don't get registered unless the necessary dependencies are installed: https://github.com/pydata/xarray/blob/1305d9b624723b86050ca5b2d854e5326bbaa8e6/xarray/backends/netCDF4_.py#L567-L568 In order to facilitating suggesting a specific backend to install (e.g., to improve error messages from opening tutorial datasets https://github.com/pydata/xarray/issues/5291), I would suggest that Xarray always registers its own backend entrypoints. Then we make the following changes to the plugin protocol:
This will let us leverage the existing Does this reasonable and worthwhile? CC @aurghs @alexamici |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5302/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
416554477 | MDU6SXNzdWU0MTY1NTQ0Nzc= | 2797 | Stalebot is being overly aggressive | shoyer 1217238 | closed | 0 | 7 | 2019-03-03T19:37:37Z | 2021-06-03T21:31:46Z | 2021-06-03T21:22:48Z | MEMBER | E.g., see https://github.com/pydata/xarray/issues/1151 where stalebot closed an issue even after another comment. Is this something we need to reconfigure or just a bug? cc @pydata/xarray |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2797/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
46049691 | MDU6SXNzdWU0NjA0OTY5MQ== | 255 | Add Dataset.to_pandas() method | shoyer 1217238 | closed | 0 | 0.5 987654 | 2 | 2014-10-17T00:01:36Z | 2021-05-04T13:56:00Z | 2021-05-04T13:56:00Z | MEMBER | This would be the complement of the DataArray constructor, converting an xray.DataArray into a 1D series, 2D DataFrame or 3D panel, whichever is appropriate.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/255/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | |||||
346822633 | MDU6SXNzdWUzNDY4MjI2MzM= | 2336 | test_88_character_filename_segmentation_fault should not try to write to the current working directory | shoyer 1217238 | closed | 0 | 2 | 2018-08-02T01:06:41Z | 2021-04-20T23:38:53Z | 2021-04-20T23:38:53Z | MEMBER | This files in cases where the current working directory does not support writes, e.g., as seen here ``` def test_88_character_filename_segmentation_fault(self): # should be fixed in netcdf4 v1.3.1 with mock.patch('netCDF4.version', '1.2.4'): with warnings.catch_warnings(): message = ('A segmentation fault may occur when the ' 'file path has exactly 88 characters') warnings.filterwarnings('error', message) with pytest.raises(Warning): # Need to construct 88 character filepath
tests/test_backends.py:1234: core/dataset.py:1150: in to_netcdf compute=compute) backends/api.py:715: in to_netcdf autoclose=autoclose, lock=lock) backends/netCDF4_.py:332: in open ds = opener() backends/netCDF4_.py:231: in _open_netcdf4_group ds = nc4.Dataset(filename, mode=mode, **kwargs) third_party/py/netCDF4/_netCDF4.pyx:2111: in netCDF4._netCDF4.Dataset.init ???
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2336/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
621082480 | MDU6SXNzdWU2MjEwODI0ODA= | 4080 | Most arguments to open_dataset should be keyword only | shoyer 1217238 | closed | 0 | 1 | 2020-05-19T15:38:51Z | 2021-03-16T10:56:09Z | 2021-03-16T10:56:09Z | MEMBER |
Similarly to the case for pandas (https://github.com/pandas-dev/pandas/issues/27544), it would be nice to make most of these arguments keyword-only, e.g., This would encourage writing readable code when calling To make this change, we could make use of the |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4080/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
645154872 | MDU6SXNzdWU2NDUxNTQ4NzI= | 4179 | Consider revising our minimum dependency version policy | shoyer 1217238 | closed | 0 | 7 | 2020-06-25T05:04:38Z | 2021-02-22T05:02:25Z | 2021-02-22T05:02:25Z | MEMBER | Our current policy is that xarray supports "the minor version (X.Y) initially published no more than N months ago" where N is:
I think this policy is too aggressive, particularly for pandas, SciPy and other libraries. Some of these projects can go 6+ months between minor releases. For example, version 2.3 of zarr is currently more than 6 months old. So if zarr released 2.4 today and xarray issued a new release tomorrow, and then our policy would dictate that we could ask users to upgrade to the new version. In https://github.com/pydata/xarray/pull/4178, I misinterpreted our policy as supporting "the most recent minor version (X.Y) initially published more than N months ago". This version makes a bit more sense to me: users only need to upgrade dependencies at least every N months to use the latest xarray release. I understand that NEP-29 chose its language intentionally, so that distributors know ahead of time when they can drop support for a Python or NumPy version. But this seems like a (very) poor fit for projects without regular releases. At the very least we should adjust the specific time windows. I'll see if I can gain some understanding of the motivation for this particular language over on the NumPy tracker... |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4179/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
267927402 | MDU6SXNzdWUyNjc5Mjc0MDI= | 1652 | Resolve warnings issued in the xarray test suite | shoyer 1217238 | closed | 0 | 10 | 2017-10-24T07:36:55Z | 2021-02-21T23:06:35Z | 2021-02-21T23:06:34Z | MEMBER | 82 warnings are currently issued in the process of running our test suite: https://gist.github.com/shoyer/db0b2c82efd76b254453216e957c4345 Some of can probably be safely ignored, but others are likely noticed by users, e.g., https://stackoverflow.com/questions/41130138/why-is-invalid-value-encountered-in-greater-warning-thrown-in-python-xarray-fo/41147570#41147570 It would be nice to clean up all of these, either by catching the appropriate upstream warning (if irrelevant) or changing our usage to avoid the warning. There may very well be a lurking FutureWarning in there somewhere that could cause issues when another library updates. Probably the easiest way to get started here is to get the test suite running locally, and use |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1652/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
777327298 | MDU6SXNzdWU3NzczMjcyOTg= | 4749 | Option for combine_attrs with conflicting values silently dropped | shoyer 1217238 | closed | 0 | 0 | 2021-01-01T18:04:49Z | 2021-02-10T19:50:17Z | 2021-02-10T19:50:17Z | MEMBER |
It would be nice to have an option to combine attrs from all objects like "no_conflicts", but that drops attributes with conflicting values rather than raising an error. We might call this This is similar to how xarray currently handles conflicting values for cc @keewis |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4749/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
124809636 | MDU6SXNzdWUxMjQ4MDk2MzY= | 703 | Document xray internals / advanced API | shoyer 1217238 | closed | 0 | 2 | 2016-01-04T18:12:30Z | 2020-11-03T17:33:32Z | 2020-11-03T17:33:32Z | MEMBER | It would be useful to document the internal I had some notes in an earlier version of the docs that could be adapted. Note, however, that the internal structure of |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/703/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
169274464 | MDU6SXNzdWUxNjkyNzQ0NjQ= | 939 | Consider how to deal with the proliferation of decoder options on open_dataset | shoyer 1217238 | closed | 0 | 8 | 2016-08-04T01:57:26Z | 2020-10-06T15:39:11Z | 2020-10-06T15:39:11Z | MEMBER | There are already lots of keyword arguments, and users want even more! (#843) Maybe we should use some sort of object to encapsulate desired options? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/939/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
644821435 | MDU6SXNzdWU2NDQ4MjE0MzU= | 4176 | Pre-expand data and attributes in DataArray/Variable HTML repr? | shoyer 1217238 | closed | 0 | 7 | 2020-06-24T18:22:35Z | 2020-09-21T20:10:26Z | 2020-06-28T17:03:40Z | MEMBER | ProposalGiven that a major purpose for plotting an array is to look at data or attributes, I wonder if we should expand these sections by default? - I worry that clicking on icons to expand sections may not be easy to discover - This would also be consistent with the text repr, which shows these sections by default (the Dataset repr is already consistent by default between text and HTML already) ContextCurrently the HTML repr for DataArray/Variable looks like this:
To see array data, you have to click on the (thanks to @max-sixty for making this a little bit more manageably sized in https://github.com/pydata/xarray/pull/3905!) There's also a really nice repr for nested dask arrays:
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4176/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
417542619 | MDU6SXNzdWU0MTc1NDI2MTk= | 2803 | Test failure with TestValidateAttrs.test_validating_attrs | shoyer 1217238 | closed | 0 | 6 | 2019-03-05T23:03:02Z | 2020-08-25T14:29:19Z | 2019-03-14T15:59:13Z | MEMBER | This is due to setting multi-dimensional attributes being an error, as of the latest netCDF4-Python release: https://github.com/Unidata/netcdf4-python/blob/master/Changelog E.g., as seen on Appveyor: https://ci.appveyor.com/project/shoyer/xray/builds/22834250/job/9q0ip6i3cchlbkw2 ``` ================================== FAILURES =================================== ___ TestValidateAttrs.test_validating_attrs _____ self = <xarray.tests.test_backends.TestValidateAttrs object at 0x00000096BE5FAFD0> def test_validating_attrs(self): def new_dataset(): return Dataset({'data': ('y', np.arange(10.0))}, {'y': np.arange(10)})
xarray\core\dataset.py:1323: in to_netcdf compute=compute) xarray\backends\api.py:767: in to_netcdf unlimited_dims=unlimited_dims) xarray\backends\api.py:810: in dump_to_store unlimited_dims=unlimited_dims) xarray\backends\common.py:262: in store self.set_attributes(attributes) xarray\backends\common.py:278: in set_attributes self.set_attribute(k, v) xarray\backends\netCDF4_.py:418: in set_attribute set_nc_attribute(self.ds, key, value) xarray\backends\netCDF4.py:294: in _set_nc_attribute obj.setncattr(key, value) netCDF4_netCDF4.pyx:2781: in netCDF4._netCDF4.Dataset.setncattr ???
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2803/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
676306518 | MDU6SXNzdWU2NzYzMDY1MTg= | 4331 | Support explicitly setting a dimension order with to_dataframe() | shoyer 1217238 | closed | 0 | 0 | 2020-08-10T17:45:17Z | 2020-08-14T18:28:26Z | 2020-08-14T18:28:26Z | MEMBER | As discussed in https://github.com/pydata/xarray/issues/2346, it would be nice to support explicitly setting the desired order of dimensions when calling There is nice precedent for this in the I imagine we could copy the exact same API for `to_dataframe. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4331/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
671019427 | MDU6SXNzdWU2NzEwMTk0Mjc= | 4295 | We shouldn't require a recent version of setuptools to install xarray | shoyer 1217238 | closed | 0 | 33 | 2020-08-01T16:49:57Z | 2020-08-14T09:52:42Z | 2020-08-14T09:52:42Z | MEMBER | @canol reports on our mailing that our setuptools 41.2 (released 21 August 2019) install requirement is making it hard to install recent versions of xarray at his company: https://groups.google.com/g/xarray/c/HS_xcZDEEtA/m/GGmW-3eMCAAJ
I was surprised to see this in our Given that setuptools may be challenging to upgrade, would it be possible to relax this version requirement? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4295/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
290593053 | MDU6SXNzdWUyOTA1OTMwNTM= | 1850 | xarray contrib module | shoyer 1217238 | closed | 0 | 25 | 2018-01-22T19:50:08Z | 2020-07-23T16:34:10Z | 2020-07-23T16:34:10Z | MEMBER | Over in #1288 @nbren12 wrote:
Yes, I agree that we should explore this. There are a lot of interesting projects building on xarray now but not great ways to discover them. Are there other open source projects with a good model we should copy here?
- Scikit-Learn has a separate GitHub org/repositories for contrib projects: https://github.com/scikit-learn-contrib.
- TensorFlow has a contrib module within the TensorFlow namespace: This gives us two different models to consider. The first "separate repository" model might be easier/flexible from a maintenance perspective. Any preferences/thoughts? There's also some nice overlap with the Pangeo project. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1850/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
35682274 | MDU6SXNzdWUzNTY4MjI3NA== | 158 | groupby should work with name=None | shoyer 1217238 | closed | 0 | 2 | 2014-06-13T15:38:00Z | 2020-05-30T13:15:56Z | 2020-05-30T13:15:56Z | MEMBER | { "url": "https://api.github.com/repos/pydata/xarray/issues/158/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | |||||||
612772669 | MDU6SXNzdWU2MTI3NzI2Njk= | 4030 | Doc build on Azure is timing out on master | shoyer 1217238 | closed | 0 | 1 | 2020-05-05T17:30:16Z | 2020-05-05T21:49:26Z | 2020-05-05T21:49:26Z | MEMBER | I don't know what's going on, but it currently times out after 1 hour: https://dev.azure.com/xarray/xarray/_build/results?buildId=2767&view=logs&j=7e620c85-24a8-5ffa-8b1f-642bc9b1fc36&t=68484831-0a19-5145-bfe9-6309e5f7691d Is it possible to login to Azure to debug this stuff? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4030/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
598567792 | MDU6SXNzdWU1OTg1Njc3OTI= | 3966 | HTML repr is slightly broken in Google Colab | shoyer 1217238 | closed | 0 | 1 | 2020-04-12T20:44:51Z | 2020-04-16T20:14:37Z | 2020-04-16T20:14:32Z | MEMBER | The "data" toggles are pre-expanded and don't work. See https://github.com/googlecolab/colabtools/issues/1145 for a full description. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3966/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
479434052 | MDU6SXNzdWU0Nzk0MzQwNTI= | 3206 | DataFrame with MultiIndex -> xarray with sparse array | shoyer 1217238 | closed | 0 | 1 | 2019-08-12T00:46:16Z | 2020-04-06T20:41:26Z | 2019-08-27T08:54:26Z | MEMBER | Now that we have preliminary support for sparse arrays in xarray, one really cool feature we could explore is creating sparse arrays from MultiIndexed pandas DataFrames. Right now, xarray's methods for creating objects from pandas always create dense arrays, but the size of these dense arrays can get big really quickly if the MultiIndex is sparsely populated, e.g.,
We can imagine Once sparse arrays work pretty well, this could actually obviate most of the use cases for |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3206/reactions", "total_count": 3, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 3, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
28376794 | MDU6SXNzdWUyODM3Njc5NA== | 25 | Consistent rules for handling merges between variables with different attributes | shoyer 1217238 | closed | 0 | 13 | 2014-02-26T22:37:01Z | 2020-04-05T19:13:13Z | 2014-09-04T06:50:49Z | MEMBER | Currently, variable attributes are checked for equality before allowing for a merge via a call to The right design of this feature should probably include some optional argument to We can argue about which of these should be the default option. My inclination is to be as flexible as possible by using 1 or 2 in most cases. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/25/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
29136905 | MDU6SXNzdWUyOTEzNjkwNQ== | 60 | Implement DataArray.idxmax() | shoyer 1217238 | closed | 0 | 1.0 741199 | 14 | 2014-03-10T22:03:06Z | 2020-03-29T01:54:25Z | 2020-03-29T01:54:25Z | MEMBER | Should match the pandas function: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.idxmax.html |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/60/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | |||||
261805282 | MDU6SXNzdWUyNjE4MDUyODI= | 1600 | groupby doesn't work when a dimension is resized as part of apply | shoyer 1217238 | closed | 0 | 1 | 2017-09-30T01:01:06Z | 2020-03-25T15:30:18Z | 2020-03-25T15:30:17Z | MEMBER | ``` In [60]: da = xarray.DataArray([1, 2, 3], dims='x', coords={'y': ('x', [1, 1, 1])}) In [61]: da.groupby('y').apply(lambda x: x[:2])IndexError Traceback (most recent call last) <ipython-input-61-4c28a4712c34> in <module>() ----> 1 da.groupby('y').apply(lambda x: x[:2]) ~/dev/xarray/xarray/core/groupby.py in apply(self, func, shortcut, kwargs) 516 applied = (maybe_wrap_array(arr, func(arr, kwargs)) 517 for arr in grouped) --> 518 return self._combine(applied, shortcut=shortcut) 519 520 def _combine(self, applied, shortcut=False): ~/dev/xarray/xarray/core/groupby.py in _combine(self, applied, shortcut) 526 else: 527 combined = concat(applied, dim) --> 528 combined = _maybe_reorder(combined, dim, positions) 529 530 if isinstance(combined, type(self._obj)): ~/dev/xarray/xarray/core/groupby.py in _maybe_reorder(xarray_obj, dim, positions) 436 return xarray_obj 437 else: --> 438 return xarray_obj[{dim: order}] 439 440 ~/dev/xarray/xarray/core/dataarray.py in getitem(self, key) 476 else: 477 # orthogonal array indexing --> 478 return self.isel(**self._item_key_to_dict(key)) 479 480 def setitem(self, key, value): ~/dev/xarray/xarray/core/dataarray.py in isel(self, drop, indexers) 710 DataArray.sel 711 """ --> 712 ds = self._to_temp_dataset().isel(drop=drop, indexers) 713 return self._from_temp_dataset(ds) 714 ~/dev/xarray/xarray/core/dataset.py in isel(self, drop, indexers) 1172 for name, var in iteritems(self._variables): 1173 var_indexers = dict((k, v) for k, v in indexers if k in var.dims) -> 1174 new_var = var.isel(var_indexers) 1175 if not (drop and name in var_indexers): 1176 variables[name] = new_var ~/dev/xarray/xarray/core/variable.py in isel(self, **indexers) 596 if dim in indexers: 597 key[i] = indexers[dim] --> 598 return self[tuple(key)] 599 600 def squeeze(self, dim=None): ~/dev/xarray/xarray/core/variable.py in getitem(self, key) 426 dims = tuple(dim for k, dim in zip(key, self.dims) 427 if not isinstance(k, integer_types)) --> 428 values = self._indexable_data[key] 429 # orthogonal indexing should ensure the dimensionality is consistent 430 if hasattr(values, 'ndim'): ~/dev/xarray/xarray/core/indexing.py in getitem(self, key) 476 def getitem(self, key): 477 key = self._convert_key(key) --> 478 return self._ensure_ndarray(self.array[key]) 479 480 def setitem(self, key, value): IndexError: index 2 is out of bounds for axis 1 with size 2 ``` This would be useful, for example, for grouped sampling: https://stackoverflow.com/questions/46498247/how-to-downsample-xarray-dataset-using-groupby To fix this, we will need to update our heuristics that decide if a groupby operation is a "transform" type operation that should have the output reordered to the original order: https://github.com/pydata/xarray/blob/24643ecee2eab04d0f84c41715d753e829f448e6/xarray/core/groupby.py#L293-L299 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1600/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
390774883 | MDU6SXNzdWUzOTA3NzQ4ODM= | 2605 | Pad method | shoyer 1217238 | closed | 0 | 9 | 2018-12-13T17:08:25Z | 2020-03-19T14:41:49Z | 2020-03-19T14:41:49Z | MEMBER | It would be nice to have a generic In particular, It probably makes sense to linearly extrapolate coordinates along padded dimensions, as long as they are regularly spaced. This might use heuristics and/or a keyword argument. I don't have a plans to work on this in the near term. It could be a good project of moderate complexity for a new contributor. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2605/reactions", "total_count": 5, "+1": 5, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
484622545 | MDU6SXNzdWU0ODQ2MjI1NDU= | 3252 | interp and reindex should work for 1d -> nd indexing | shoyer 1217238 | closed | 0 | 12 | 2019-08-23T16:52:44Z | 2020-03-13T13:58:38Z | 2020-03-13T13:58:38Z | MEMBER | This works with Apparently this is quite important for vertical regridding in weather/climate science (cc @rabernat, @nbren12 ) ``` In [35]: import xarray as xr In [36]: import numpy as np In [37]: data = xr.DataArray(np.arange(12).reshape((3, 4)), [('x', np.arange(3)), ('y', np.arange(4))]) In [38]: ind = xr.DataArray([[0, 2], [1, 0], [1, 2]], dims=['x', 'z'], coords={'x': [0, 1, 2]}) In [39]: data Out[39]: <xarray.DataArray (x: 3, y: 4)> array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) Coordinates: * x (x) int64 0 1 2 * y (y) int64 0 1 2 3 In [40]: ind Out[40]: <xarray.DataArray (x: 3, z: 2)> array([[0, 2], [1, 0], [1, 2]]) Coordinates: * x (x) int64 0 1 2 Dimensions without coordinates: z In [41]: data.isel(y=ind) Out[41]: <xarray.DataArray (x: 3, z: 2)> array([[ 0, 2], [ 5, 4], [ 9, 10]]) Coordinates: * x (x) int64 0 1 2 y (x, z) int64 0 2 1 0 1 2 Dimensions without coordinates: z In [42]: data.sel(y=ind) Out[42]: <xarray.DataArray (x: 3, z: 2)> array([[ 0, 2], [ 5, 4], [ 9, 10]]) Coordinates: * x (x) int64 0 1 2 y (x, z) int64 0 2 1 0 1 2 Dimensions without coordinates: z In [43]: data.interp(y=ind)ValueError Traceback (most recent call last) <ipython-input-43-e6eb7e39fd31> in <module> ----> 1 data.interp(y=ind) ~/dev/xarray/xarray/core/dataarray.py in interp(self, coords, method, assume_sorted, kwargs, coords_kwargs) 1303 kwargs=kwargs, 1304 assume_sorted=assume_sorted, -> 1305 coords_kwargs 1306 ) 1307 return self._from_temp_dataset(ds) ~/dev/xarray/xarray/core/dataset.py in interp(self, coords, method, assume_sorted, kwargs, coords_kwargs) 2455 } 2456 variables[name] = missing.interp( -> 2457 var, var_indexers, method, kwargs 2458 ) 2459 elif all(d not in indexers for d in var.dims): ~/dev/xarray/xarray/core/missing.py in interp(var, indexes_coords, method, *kwargs) 533 else: 534 out_dims.add(d) --> 535 return result.transpose(tuple(out_dims)) 536 537 ~/dev/xarray/xarray/core/variable.py in transpose(self, *dims) 1219 return self.copy(deep=False) 1220 -> 1221 data = as_indexable(self._data).transpose(axes) 1222 return type(self)(dims, data, self._attrs, self._encoding, fastpath=True) 1223 ~/dev/xarray/xarray/core/indexing.py in transpose(self, order) 1218 1219 def transpose(self, order): -> 1220 return self.array.transpose(order) 1221 1222 def getitem(self, key): ValueError: axes don't match array In [44]: data.reindex(y=ind) /Users/shoyer/dev/xarray/xarray/core/dataarray.py:1240: FutureWarning: Indexer has dimensions ('x', 'z') that are different from that to be indexed along y. This will behave differently in the future. fill_value=fill_value, ValueError Traceback (most recent call last) <ipython-input-44-1277ead996ae> in <module> ----> 1 data.reindex(y=ind) ~/dev/xarray/xarray/core/dataarray.py in reindex(self, indexers, method, tolerance, copy, fill_value, **indexers_kwargs) 1238 tolerance=tolerance, 1239 copy=copy, -> 1240 fill_value=fill_value, 1241 ) 1242 return self._from_temp_dataset(ds) ~/dev/xarray/xarray/core/dataset.py in reindex(self, indexers, method, tolerance, copy, fill_value, **indexers_kwargs) 2360 tolerance, 2361 copy=copy, -> 2362 fill_value=fill_value, 2363 ) 2364 coord_names = set(self._coord_names) ~/dev/xarray/xarray/core/alignment.py in reindex_variables(variables, sizes, indexes, indexers, method, tolerance, copy, fill_value) 398 ) 399 --> 400 target = new_indexes[dim] = utils.safe_cast_to_index(indexers[dim]) 401 402 if dim in indexes: ~/dev/xarray/xarray/core/utils.py in safe_cast_to_index(array) 104 index = array 105 elif hasattr(array, "to_index"): --> 106 index = array.to_index() 107 else: 108 kwargs = {} ~/dev/xarray/xarray/core/dataarray.py in to_index(self) 545 arrays. 546 """ --> 547 return self.variable.to_index() 548 549 @property ~/dev/xarray/xarray/core/variable.py in to_index(self) 445 def to_index(self): 446 """Convert this variable to a pandas.Index""" --> 447 return self.to_index_variable().to_index() 448 449 def to_dict(self, data=True): ~/dev/xarray/xarray/core/variable.py in to_index_variable(self) 438 """Return this variable as an xarray.IndexVariable""" 439 return IndexVariable( --> 440 self.dims, self._data, self._attrs, encoding=self._encoding, fastpath=True 441 ) 442 ~/dev/xarray/xarray/core/variable.py in init(self, dims, data, attrs, encoding, fastpath) 1941 super().init(dims, data, attrs, encoding, fastpath) 1942 if self.ndim != 1: -> 1943 raise ValueError("%s objects must be 1-dimensional" % type(self).name) 1944 1945 # Unlike in Variable, always eagerly load values into memory ValueError: IndexVariable objects must be 1-dimensional ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3252/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
309136602 | MDU6SXNzdWUzMDkxMzY2MDI= | 2019 | Appending to an existing netCDF file fails with scipy==1.0.1 | shoyer 1217238 | closed | 0 | 5 | 2018-03-27T21:15:05Z | 2020-03-09T07:18:07Z | 2020-03-09T07:18:07Z | MEMBER | https://travis-ci.org/pydata/xarray/builds/359093748 Example failure: ``` ___ ScipyFilePathTest.test_append_write ____ self = <xarray.tests.test_backends.ScipyFilePathTest testMethod=test_append_write> def test_append_write(self): # regression for GH1215 data = create_test_data()
../../../miniconda/envs/test_env/lib/python3.6/contextlib.py:81: in enter return next(self.gen) xarray/tests/test_backends.py:155: in roundtrip_append self.save(data[[key]], path, mode=mode, save_kwargs) xarray/tests/test_backends.py:162: in save kwargs) xarray/core/dataset.py:1131: in to_netcdf unlimited_dims=unlimited_dims) xarray/backends/api.py:657: in to_netcdf unlimited_dims=unlimited_dims) xarray/core/dataset.py:1068: in dump_to_store unlimited_dims=unlimited_dims) xarray/backends/common.py:363: in store unlimited_dims=unlimited_dims) xarray/backends/common.py:402: in set_variables self.writer.add(source, target) xarray/backends/common.py:265: in add target[...] = source xarray/backends/scipy_.py:61: in setitem data[key] = value self = <scipy.io.netcdf.netcdf_variable object at 0x7fe3eb3ec6a0> index = Ellipsis, data = array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. ]) def setitem(self, index, data): if self.maskandscale: missing_value = ( self._get_missing_value() or getattr(data, 'fill_value', 999999)) self._attributes.setdefault('missing_value', missing_value) self._attributes.setdefault('_FillValue', missing_value) data = ((data - self._attributes.get('add_offset', 0.0)) / self._attributes.get('scale_factor', 1.0)) data = np.ma.asarray(data).filled(missing_value) if self._typecode not in 'fd' and data.dtype.kind == 'f': data = np.round(data)
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2019/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
304630814 | MDU6SXNzdWUzMDQ2MzA4MTQ= | 1986 | Doc build in Travis-CI should fail when IPython encounters unexpected error | shoyer 1217238 | closed | 0 | 2 | 2018-03-13T05:15:03Z | 2020-01-13T20:33:46Z | 2020-01-13T17:43:36Z | MEMBER | We don't want to release docs in a broken state. Ideally, we would simply fail the build when Sphinx encounters a warning (e.g., by adding the Expand for warnings from sphinx:
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray:1: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray:1: WARNING: Inline strong start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.all:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.any:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.argmax:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.argmin:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.assign_attrs:4: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.assign_attrs:4: WARNING: Inline strong start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.count:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.cumprod:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.cumsum:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.groupby_bins:66: WARNING: duplicate citation R3, other instance in /Users/shoyer/dev/xarray/doc/generated/xarray.apply_ufunc.rst
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray.interpolate_na:15: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.max:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.mean:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.median:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.min:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.pipe:2: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.pipe:2: WARNING: Inline strong start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.prod:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray.quantile:44: WARNING: Unexpected indentation.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.resample:54: WARNING: duplicate citation R4, other instance in /Users/shoyer/dev/xarray/doc/generated/xarray.ufuncs.arcsinh.rst
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.std:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.sum:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray.to_netcdf:22: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray.to_netcdf:58: WARNING: Unexpected indentation.
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray.to_netcdf:55: WARNING: Inline literal start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.DataArray.var:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset:1: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset:1: WARNING: Inline strong start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.Dataset.assign_attrs:4: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.Dataset.assign_attrs:4: WARNING: Inline strong start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.Dataset.cumprod:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.Dataset.cumsum:10: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.Dataset.groupby_bins:66: WARNING: duplicate citation R7, other instance in /Users/shoyer/dev/xarray/doc/generated/xarray.ufuncs.arctanh.rst
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset.interpolate_na:15: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset.merge:28: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.Dataset.pipe:2: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.Dataset.pipe:2: WARNING: Inline strong start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/common.py:docstring of xarray.Dataset.resample:54: WARNING: duplicate citation R8, other instance in /Users/shoyer/dev/xarray/doc/generated/xarray.ufuncs.exp.rst
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset.to_netcdf:59: WARNING: Unexpected indentation.
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset.to_netcdf:56: WARNING: Inline literal start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/alignment.py:docstring of xarray.align:25: WARNING: Unexpected indentation.
/Users/shoyer/dev/xarray/xarray/core/alignment.py:docstring of xarray.align:45: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/core/computation.py:docstring of xarray.apply_ufunc:147: WARNING: duplicate citation R9, other instance in /Users/shoyer/dev/xarray/doc/generated/xarray.ufuncs.exp.rst
/Users/shoyer/dev/xarray/xarray/core/combine.py:docstring of xarray.auto_combine:36: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/combine.py:docstring of xarray.concat:35: WARNING: Definition list ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy.apply:11: WARNING: Unexpected indentation.
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy.apply:13: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy.apply:26: WARNING: Unexpected indentation.
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy.apply:28: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy.apply:30: WARNING: Enumerated list ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy.apply:11: WARNING: Unexpected indentation.
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy.apply:13: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/core/merge.py:docstring of xarray.merge:15: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/backends/api.py:docstring of xarray.open_mfdataset:11: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/backends/api.py:docstring of xarray.open_mfdataset:38: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.angle:13: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.arccos:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.arccosh:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.arcsin:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.arcsinh:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.arctan:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.arctan2:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.arctanh:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.ceil:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.conj:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.copysign:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.cos:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.cosh:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.deg2rad:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.degrees:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.exp:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.expm1:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fabs:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fix:16: WARNING: Block quote ends without a blank line; unexpected unindent.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.floor:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fmax:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fmin:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fmod:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.frexp:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.hypot:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.isfinite:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.isinf:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.isnan:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.ldexp:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.log:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.log10:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.log1p:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.log2:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.logaddexp:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.logaddexp2:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.logical_and:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.logical_not:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.logical_or:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.logical_xor:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.maximum:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.minimum:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.nextafter:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.rad2deg:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.radians:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.rint:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.sign:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.signbit:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.sin:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.sinh:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.sqrt:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.square:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.tan:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.tanh:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.trunc:6: WARNING: Inline emphasis start-string without end-string.
/Users/shoyer/dev/xarray/doc/README.rst: WARNING: document isn't included in any toctree
/Users/shoyer/dev/xarray/doc/api-hidden.rst: WARNING: document isn't included in any toctree
done
checking consistency... done
preparing documents... done
/Users/shoyer/dev/xarray/doc/api.rst:165: WARNING: py:attr reference target not found: Dataset.astype
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray:1: WARNING: py:obj reference target not found: xarray.DataArray.isel_points
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray:1: WARNING: py:obj reference target not found: xarray.DataArray.sel_points
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray:1: WARNING: py:obj reference target not found: xarray.DataArray.dt
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray.chunk:29: WARNING: py:func reference target not found: dask.array.from_array
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray.compute:26: WARNING: py:obj reference target not found: dask.array.compute
/Users/shoyer/dev/xarray/xarray/core/ops.py:docstring of xarray.DataArray.conj:16: WARNING: py:obj reference target not found: numpy.conjugate
/Users/shoyer/dev/xarray/xarray/core/ops.py:docstring of xarray.DataArray.conjugate:16: WARNING: py:obj reference target not found: numpy.conjugate
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray.identical:16: WARNING: py:obj reference target not found: DataArray.equal
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray.interpolate_na:53: WARNING: py:obj reference target not found: scipy.interpolate
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray.load:25: WARNING: py:obj reference target not found: dask.array.compute
/Users/shoyer/dev/xarray/xarray/core/dataarray.py:docstring of xarray.DataArray.persist:23: WARNING: py:obj reference target not found: dask.persist
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset:1: WARNING: py:obj reference target not found: xarray.Dataset.astype
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset:1: WARNING: py:obj reference target not found: xarray.Dataset.dump_to_store
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset:1: WARNING: py:obj reference target not found: xarray.Dataset.get
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset:1: WARNING: py:obj reference target not found: xarray.Dataset.isel_points
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset:1: WARNING: py:obj reference target not found: xarray.Dataset.keys
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset:1: WARNING: py:obj reference target not found: xarray.Dataset.load_store
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset:1: WARNING: py:obj reference target not found: xarray.Dataset.sel_points
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset.chunk:29: WARNING: py:func reference target not found: dask.array.from_array
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset.compute:26: WARNING: py:obj reference target not found: dask.array.compute
/Users/shoyer/dev/xarray/xarray/core/ops.py:docstring of xarray.Dataset.conj:16: WARNING: py:obj reference target not found: numpy.conjugate
/Users/shoyer/dev/xarray/xarray/core/ops.py:docstring of xarray.Dataset.conjugate:16: WARNING: py:obj reference target not found: numpy.conjugate
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset.info:20: WARNING: py:obj reference target not found: netCDF
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset.interpolate_na:53: WARNING: py:obj reference target not found: scipy.interpolate
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset.load:25: WARNING: py:obj reference target not found: dask.array.compute
/Users/shoyer/dev/xarray/xarray/core/dataset.py:docstring of xarray.Dataset.persist:25: WARNING: py:obj reference target not found: dask.persist
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.all
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.any
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.argmax
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.argmin
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.argsort
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.astype
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.broadcast_equals
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.chunk
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.clip
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.compute
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.concat
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.conj
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.conjugate
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.copy
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.count
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.cumprod
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.cumsum
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.equals
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.expand_dims
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.fillna
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.get_axis_num
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.get_level_variable
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.identical
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.isel
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.isnull
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.item
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.load
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.max
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.mean
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.median
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.min
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.no_conflicts
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.notnull
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.pad_with_fill_value
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.prod
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.quantile
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.rank
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.reduce
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.roll
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.rolling_window
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.round
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.searchsorted
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.set_dims
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.shift
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.squeeze
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.stack
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.std
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.sum
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.to_base_variable
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.to_coord
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.to_index
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.to_index_variable
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.to_variable
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.transpose
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.unstack
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.var
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.where
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.T
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.attrs
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.chunks
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.data
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.dims
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.dtype
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.encoding
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.imag
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.level_names
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.name
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.nbytes
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.ndim
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.real
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.shape
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.size
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.sizes
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.IndexVariable:1: WARNING: py:obj reference target not found: xarray.IndexVariable.values
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.all
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.any
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.argmax
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.argmin
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.argsort
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.astype
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.broadcast_equals
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.chunk
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.clip
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.compute
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.concat
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.conj
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.conjugate
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.copy
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.count
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.cumprod
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.cumsum
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.equals
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.expand_dims
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.fillna
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.get_axis_num
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.identical
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.isel
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.isnull
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.item
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.load
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.max
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.mean
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.median
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.min
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.no_conflicts
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.notnull
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.pad_with_fill_value
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.prod
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.quantile
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.rank
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.reduce
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.roll
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.rolling_window
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.round
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.searchsorted
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.set_dims
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.shift
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.squeeze
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.stack
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.std
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.sum
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.to_base_variable
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.to_coord
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.to_index
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.to_index_variable
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.to_variable
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.transpose
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.unstack
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.var
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.where
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.T
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.attrs
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.chunks
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.data
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.dims
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.dtype
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.encoding
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.imag
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.nbytes
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.ndim
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.real
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.shape
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.size
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.sizes
/Users/shoyer/dev/xarray/xarray/core/variable.py:docstring of xarray.Variable:1: WARNING: py:obj reference target not found: xarray.Variable.values
/Users/shoyer/dev/xarray/xarray/core/computation.py:docstring of xarray.apply_ufunc:59: WARNING: py:func reference target not found: numpy.vectorize
/Users/shoyer/dev/xarray/xarray/core/computation.py:docstring of xarray.apply_ufunc:197: WARNING: py:func reference target not found: numpy.vectorize
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.assert_open
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.close
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.encode
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.encode_attribute
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.encode_variable
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.ensure_open
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.get
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.get_attrs
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.get_dimensions
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.get_encoding
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.get_variables
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.items
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.keys
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.load
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.open_store_variable
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.prepare_variable
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.set_attribute
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.set_attributes
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.set_dimension
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.set_dimensions
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.set_variable
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.set_variables
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.store
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.store_dataset
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.sync
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.values
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.attrs
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.dimensions
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.ds
/Users/shoyer/dev/xarray/xarray/backends/h5netcdf_.py:docstring of xarray.backends.H5NetCDFStore:1: WARNING: py:obj reference target not found: xarray.backends.H5NetCDFStore.variables
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.assert_open
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.close
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.encode
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.encode_attribute
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.encode_variable
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.ensure_open
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.get
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.get_attrs
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.get_dimensions
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.get_encoding
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.get_variables
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.items
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.keys
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.load
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.open
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.open_store_variable
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.prepare_variable
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.set_attribute
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.set_attributes
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.set_dimension
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.set_dimensions
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.set_variable
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.set_variables
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.store
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.store_dataset
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.sync
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.values
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.attrs
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.dimensions
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.ds
/Users/shoyer/dev/xarray/xarray/backends/netCDF4_.py:docstring of xarray.backends.NetCDF4DataStore:1: WARNING: py:obj reference target not found: xarray.backends.NetCDF4DataStore.variables
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.close
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.get
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.get_attrs
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.get_dimensions
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.get_encoding
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.get_variables
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.items
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.keys
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.load
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.open
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.open_store_variable
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.values
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.attrs
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.dimensions
/Users/shoyer/dev/xarray/xarray/backends/pydap_.py:docstring of xarray.backends.PydapDataStore:1: WARNING: py:obj reference target not found: xarray.backends.PydapDataStore.variables
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.assert_open
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.close
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.encode
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.encode_attribute
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.encode_variable
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.ensure_open
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.get
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.get_attrs
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.get_dimensions
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.get_encoding
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.get_variables
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.items
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.keys
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.load
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.open_store_variable
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.prepare_variable
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.set_attribute
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.set_attributes
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.set_dimension
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.set_dimensions
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.set_variable
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.set_variables
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.store
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.store_dataset
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.sync
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.values
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.attrs
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.dimensions
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.ds
/Users/shoyer/dev/xarray/xarray/backends/scipy_.py:docstring of xarray.backends.ScipyDataStore:1: WARNING: py:obj reference target not found: xarray.backends.ScipyDataStore.variables
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DataArrayGroupBy.all
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DataArrayGroupBy.any
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DataArrayGroupBy.argmax
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DataArrayGroupBy.argmin
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DataArrayGroupBy.count
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DataArrayGroupBy.max
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DataArrayGroupBy.mean
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DataArrayGroupBy.median
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DataArrayGroupBy.min
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DataArrayGroupBy.prod
generating indices.../Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DataArrayGroupBy.std
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DataArrayGroupBy.sum
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DataArrayGroupBy.var
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DataArrayGroupBy.groups
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy.assign_coords:15: WARNING: py:obj reference target not found: Dataset.assign_coords
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy.fillna:29: WARNING: py:obj reference target not found: Dataset.fillna
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy.fillna:29: WARNING: py:obj reference target not found: DataArray.fillna
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DataArrayGroupBy.where:30: WARNING: py:obj reference target not found: Dataset.where
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DatasetGroupBy.all
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DatasetGroupBy.any
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DatasetGroupBy.argmax
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DatasetGroupBy.argmin
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DatasetGroupBy.count
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DatasetGroupBy.max
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DatasetGroupBy.mean
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DatasetGroupBy.median
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DatasetGroupBy.min
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DatasetGroupBy.prod
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DatasetGroupBy.std
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DatasetGroupBy.sum
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DatasetGroupBy.var
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy:1: WARNING: py:obj reference target not found: xarray.core.groupby.DatasetGroupBy.groups
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy.assign:15: WARNING: py:obj reference target not found: Dataset.assign
genindex/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy.assign_coords:15: WARNING: py:obj reference target not found: Dataset.assign_coords
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy.fillna:29: WARNING: py:obj reference target not found: Dataset.fillna
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy.fillna:29: WARNING: py:obj reference target not found: DataArray.fillna
/Users/shoyer/dev/xarray/xarray/core/groupby.py:docstring of xarray.core.groupby.DatasetGroupBy.where:30: WARNING: py:obj reference target not found: Dataset.where
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling.__init__:45: WARNING: py:obj reference target not found: DataArray.rolling
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling.__init__:45: WARNING: py:obj reference target not found: DataArray.groupby
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling.__init__:45: WARNING: py:obj reference target not found: Dataset.rolling
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling.__init__:45: WARNING: py:obj reference target not found: Dataset.groupby
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DataArrayRolling.argmax
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DataArrayRolling.argmin
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DataArrayRolling.count
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DataArrayRolling.max
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DataArrayRolling.mean
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DataArrayRolling.median
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DataArrayRolling.min
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DataArrayRolling.prod
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DataArrayRolling.std
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DataArrayRolling.sum
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DataArrayRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DataArrayRolling.var
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling.__init__:45: WARNING: py:obj reference target not found: Dataset.rolling
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling.__init__:45: WARNING: py:obj reference target not found: DataArray.rolling
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling.__init__:45: WARNING: py:obj reference target not found: Dataset.groupby
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling.__init__:45: WARNING: py:obj reference target not found: DataArray.groupby
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DatasetRolling.argmax
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DatasetRolling.argmin
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DatasetRolling.count
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DatasetRolling.max
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DatasetRolling.mean
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DatasetRolling.median
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DatasetRolling.min
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DatasetRolling.prod
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DatasetRolling.std
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DatasetRolling.sum
/Users/shoyer/dev/xarray/xarray/core/rolling.py:docstring of xarray.core.rolling.DatasetRolling:1: WARNING: py:obj reference target not found: xarray.core.rolling.DatasetRolling.var
/Users/shoyer/dev/xarray/xarray/backends/api.py:docstring of xarray.open_dataarray:73: WARNING: py:func reference target not found: dask.array.from_array
/Users/shoyer/dev/xarray/xarray/backends/api.py:docstring of xarray.open_dataset:72: WARNING: py:func reference target not found: dask.array.from_array
/Users/shoyer/dev/xarray/xarray/backends/api.py:docstring of xarray.open_mfdataset:68: WARNING: py:func reference target not found: dask.array.from_array
/Users/shoyer/dev/xarray/xarray/backends/rasterio_.py:docstring of xarray.open_rasterio:48: WARNING: py:func reference target not found: dask.array.from_array
/Users/shoyer/dev/xarray/xarray/plot/facetgrid.py:docstring of xarray.plot.FacetGrid:1: WARNING: py:obj reference target not found: xarray.plot.FacetGrid.add_colorbar
/Users/shoyer/dev/xarray/xarray/plot/facetgrid.py:docstring of xarray.plot.FacetGrid:1: WARNING: py:obj reference target not found: xarray.plot.FacetGrid.set_axis_labels
/Users/shoyer/dev/xarray/xarray/plot/facetgrid.py:docstring of xarray.plot.FacetGrid:1: WARNING: py:obj reference target not found: xarray.plot.FacetGrid.set_xlabels
/Users/shoyer/dev/xarray/xarray/plot/facetgrid.py:docstring of xarray.plot.FacetGrid:1: WARNING: py:obj reference target not found: xarray.plot.FacetGrid.set_ylabels
/Users/shoyer/dev/xarray/xarray/testing.py:docstring of xarray.testing.assert_equal:29: WARNING: py:obj reference target not found: Dataset.equals
/Users/shoyer/dev/xarray/xarray/testing.py:docstring of xarray.testing.assert_equal:29: WARNING: py:obj reference target not found: DataArray.equals
/Users/shoyer/dev/xarray/xarray/testing.py:docstring of xarray.testing.assert_identical:26: WARNING: py:obj reference target not found: Dataset.equals
/Users/shoyer/dev/xarray/xarray/testing.py:docstring of xarray.testing.assert_identical:26: WARNING: py:obj reference target not found: DataArray.equals
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.arccos:53: WARNING: py:obj reference target not found: emath.arccos
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.arcsin:49: WARNING: py:obj reference target not found: emath.arcsin
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.arctanh:47: WARNING: py:obj reference target not found: emath.arctanh
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.deg2rad:50: WARNING: py:obj reference target not found: unwrap
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.exp:50: WARNING: py:obj reference target not found: exp2
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fabs:52: WARNING: py:obj reference target not found: absolute
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fix:33: WARNING: py:obj reference target not found: around
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fmax:63: WARNING: py:obj reference target not found: amax
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fmax:66: WARNING: py:obj reference target not found: nanmax
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fmax:68: WARNING: py:obj reference target not found: amin
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fmax:68: WARNING: py:obj reference target not found: nanmin
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fmin:63: WARNING: py:obj reference target not found: amin
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fmin:66: WARNING: py:obj reference target not found: nanmin
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fmin:68: WARNING: py:obj reference target not found: amax
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fmin:68: WARNING: py:obj reference target not found: nanmax
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fmod:57: WARNING: py:obj reference target not found: remainder
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.fmod:59: WARNING: py:obj reference target not found: divide
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.iscomplex:31: WARNING: py:obj reference target not found: iscomplexobj
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.isfinite:57: WARNING: py:obj reference target not found: isneginf
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.isfinite:57: WARNING: py:obj reference target not found: isposinf
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.isinf:61: WARNING: py:obj reference target not found: isneginf
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.isinf:61: WARNING: py:obj reference target not found: isposinf
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.isnan:53: WARNING: py:obj reference target not found: isneginf
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.isnan:53: WARNING: py:obj reference target not found: isposinf
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.isnan:53: WARNING: py:obj reference target not found: isnat
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.isreal:31: WARNING: py:obj reference target not found: isrealobj
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.log:51: WARNING: py:obj reference target not found: emath.log
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.log10:48: WARNING: py:obj reference target not found: emath.log10
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.log2:47: WARNING: py:obj reference target not found: emath.log2
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.logical_and:48: WARNING: py:obj reference target not found: bitwise_and
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.logical_or:49: WARNING: py:obj reference target not found: bitwise_or
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.logical_xor:50: WARNING: py:obj reference target not found: bitwise_xor
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.maximum:63: WARNING: py:obj reference target not found: amax
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.maximum:66: WARNING: py:obj reference target not found: nanmax
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.maximum:68: WARNING: py:obj reference target not found: amin
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.maximum:68: WARNING: py:obj reference target not found: nanmin
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.minimum:63: WARNING: py:obj reference target not found: amin
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.minimum:66: WARNING: py:obj reference target not found: nanmin
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.minimum:68: WARNING: py:obj reference target not found: amax
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.minimum:68: WARNING: py:obj reference target not found: nanmax
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.rad2deg:50: WARNING: py:obj reference target not found: unwrap
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.sqrt:52: WARNING: py:obj reference target not found: lib.scimath.sqrt
/Users/shoyer/dev/xarray/xarray/ufuncs.py:docstring of xarray.ufuncs.square:48: WARNING: py:obj reference target not found: power
/Users/shoyer/dev/xarray/doc/whats-new.rst:51: WARNING: py:func reference target not found: np.einsum
/Users/shoyer/dev/xarray/doc/whats-new.rst:80: WARNING: py:func reference target not found: xarray.DataArrayRolling
/Users/shoyer/dev/xarray/doc/whats-new.rst:80: WARNING: py:func reference target not found: xarray.DataArrayRolling.construct
/Users/shoyer/dev/xarray/doc/whats-new.rst:153: WARNING: py:func reference target not found: plot
/Users/shoyer/dev/xarray/doc/whats-new.rst:236: WARNING: py:meth reference target not found: DataArray.__dask_scheduler__
/Users/shoyer/dev/xarray/doc/whats-new.rst:238: WARNING: py:meth reference target not found: DataArray.plot.imshow
/Users/shoyer/dev/xarray/doc/whats-new.rst:415: WARNING: py:func reference target not found: xarray.show_versions
/Users/shoyer/dev/xarray/doc/whats-new.rst:428: WARNING: py:func reference target not found: xarray.conventions.decode_cf_datetime
/Users/shoyer/dev/xarray/doc/whats-new.rst:446: WARNING: py:func reference target not found: xarray.to_netcdf
/Users/shoyer/dev/xarray/doc/whats-new.rst:487: WARNING: py:meth reference target not found: xarray.backends.PydapDataStore.open
/Users/shoyer/dev/xarray/doc/whats-new.rst:856: WARNING: py:meth reference target not found: DataArray.rolling(...).count
/Users/shoyer/dev/xarray/doc/whats-new.rst:994: WARNING: py:meth reference target not found: xarray.Variable.to_base_variable
/Users/shoyer/dev/xarray/doc/whats-new.rst:994: WARNING: py:meth reference target not found: xarray.Variable.to_index_variable
/Users/shoyer/dev/xarray/doc/whats-new.rst:1047: WARNING: py:meth reference target not found: Variable.compute
/Users/shoyer/dev/xarray/doc/whats-new.rst:1073: WARNING: py:class reference target not found: FacetGrid
/Users/shoyer/dev/xarray/doc/whats-new.rst:1089: WARNING: py:attr reference target not found: xray.Dataset.encoding
/Users/shoyer/dev/xarray/doc/whats-new.rst:1089: WARNING: py:meth reference target not found: xray.Dataset.to_netcdf
/Users/shoyer/dev/xarray/doc/whats-new.rst:1170: WARNING: py:meth reference target not found: xarray.Dataset.isel_points
/Users/shoyer/dev/xarray/doc/whats-new.rst:1170: WARNING: py:meth reference target not found: xarray.Dataset.sel_points
/Users/shoyer/dev/xarray/doc/whats-new.rst:1282: WARNING: py:meth reference target not found: resample
/Users/shoyer/dev/xarray/doc/whats-new.rst:1287: WARNING: py:meth reference target not found: sel
/Users/shoyer/dev/xarray/doc/whats-new.rst:1287: WARNING: py:meth reference target not found: loc
/Users/shoyer/dev/xarray/doc/whats-new.rst:1307: WARNING: py:meth reference target not found: filter_by_attrs
/Users/shoyer/dev/xarray/doc/whats-new.rst:1434: WARNING: py:class reference target not found: pd.Series
/Users/shoyer/dev/xarray/doc/whats-new.rst:1453: WARNING: py:meth reference target not found: xarray.Dataset.from_dataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:1504: WARNING: py:class reference target not found: xray.DataArray
/Users/shoyer/dev/xarray/doc/whats-new.rst:1541: WARNING: py:meth reference target not found: xray.DataArray.to_dataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:1611: WARNING: py:meth reference target not found: xray.Dataset.shift
/Users/shoyer/dev/xarray/doc/whats-new.rst:1611: WARNING: py:meth reference target not found: xray.Dataset.roll
/Users/shoyer/dev/xarray/doc/whats-new.rst:1626: WARNING: py:func reference target not found: xray.broadcast
/Users/shoyer/dev/xarray/doc/whats-new.rst:1683: WARNING: py:meth reference target not found: xray.DataArray.plot
/Users/shoyer/dev/xarray/doc/whats-new.rst:1692: WARNING: py:class reference target not found: xray.plot.FacetGrid
/Users/shoyer/dev/xarray/doc/whats-new.rst:1692: WARNING: py:meth reference target not found: xray.plot.plot
/Users/shoyer/dev/xarray/doc/whats-new.rst:1695: WARNING: py:meth reference target not found: xray.Dataset.sel
/Users/shoyer/dev/xarray/doc/whats-new.rst:1695: WARNING: py:meth reference target not found: xray.Dataset.reindex
/Users/shoyer/dev/xarray/doc/whats-new.rst:1712: WARNING: py:meth reference target not found: xray.Dataset.to_netcdf
/Users/shoyer/dev/xarray/doc/whats-new.rst:1715: WARNING: py:attr reference target not found: xray.Dataset.real
/Users/shoyer/dev/xarray/doc/whats-new.rst:1715: WARNING: py:attr reference target not found: xray.Dataset.imag
/Users/shoyer/dev/xarray/doc/whats-new.rst:1717: WARNING: py:meth reference target not found: xray.Dataset.from_dataframe
/Users/shoyer/dev/xarray/doc/whats-new.rst:1732: WARNING: py:meth reference target not found: xray.DataArray.name
/Users/shoyer/dev/xarray/doc/whats-new.rst:1734: WARNING: py:meth reference target not found: xray.DataArray.where
/Users/shoyer/dev/xarray/doc/whats-new.rst:1759: WARNING: py:meth reference target not found: xray.Dataset.isel_points
/Users/shoyer/dev/xarray/doc/whats-new.rst:1759: WARNING: py:meth reference target not found: xray.Dataset.sel_points
/Users/shoyer/dev/xarray/doc/whats-new.rst:1759: WARNING: py:meth reference target not found: xray.Dataset.where
/Users/shoyer/dev/xarray/doc/whats-new.rst:1759: WARNING: py:meth reference target not found: xray.Dataset.diff
/Users/shoyer/dev/xarray/doc/whats-new.rst:1768: WARNING: py:meth reference target not found: xray.DataArray.plot
/Users/shoyer/dev/xarray/doc/whats-new.rst:1773: WARNING: undefined label: copies vs views (if the link has no caption the label must precede a section header)
/Users/shoyer/dev/xarray/doc/whats-new.rst:1778: WARNING: py:meth reference target not found: xray.Dataset.isel_points
/Users/shoyer/dev/xarray/doc/whats-new.rst:1778: WARNING: py:meth reference target not found: xray.Dataset.sel_points
/Users/shoyer/dev/xarray/doc/whats-new.rst:1823: WARNING: py:meth reference target not found: xray.Dataset.where
/Users/shoyer/dev/xarray/doc/whats-new.rst:1834: WARNING: py:meth reference target not found: xray.DataArray.diff
/Users/shoyer/dev/xarray/doc/whats-new.rst:1834: WARNING: py:meth reference target not found: xray.Dataset.diff
/Users/shoyer/dev/xarray/doc/whats-new.rst:1838: WARNING: py:meth reference target not found: xray.DataArray.to_masked_array
/Users/shoyer/dev/xarray/doc/whats-new.rst:1847: WARNING: py:meth reference target not found: xray.open_dataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:1876: WARNING: py:func reference target not found: xray.concat
/Users/shoyer/dev/xarray/doc/whats-new.rst:1886: WARNING: py:func reference target not found: xray.open_mfdataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:1890: WARNING: py:func reference target not found: xray.open_dataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:1890: WARNING: py:func reference target not found: xray.open_mfdataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:1895: WARNING: py:func reference target not found: xray.save_mfdataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:1914: WARNING: py:func reference target not found: xray.open_dataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:1914: WARNING: py:func reference target not found: xray.open_mfdataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:1931: WARNING: py:meth reference target not found: xray.Dataset.pipe
/Users/shoyer/dev/xarray/doc/whats-new.rst:1933: WARNING: py:meth reference target not found: xray.Dataset.assign
/Users/shoyer/dev/xarray/doc/whats-new.rst:1933: WARNING: py:meth reference target not found: xray.Dataset.assign_coords
/Users/shoyer/dev/xarray/doc/whats-new.rst:1953: WARNING: py:func reference target not found: xray.open_mfdataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:1969: WARNING: py:func reference target not found: xray.concat
/Users/shoyer/dev/xarray/doc/whats-new.rst:2005: WARNING: py:meth reference target not found: xray.Dataset.to_array
/Users/shoyer/dev/xarray/doc/whats-new.rst:2005: WARNING: py:meth reference target not found: xray.DataArray.to_dataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:2016: WARNING: py:meth reference target not found: xray.Dataset.fillna
/Users/shoyer/dev/xarray/doc/whats-new.rst:2028: WARNING: py:meth reference target not found: xray.Dataset.assign
/Users/shoyer/dev/xarray/doc/whats-new.rst:2028: WARNING: py:meth reference target not found: xray.Dataset.assign_coords
/Users/shoyer/dev/xarray/doc/whats-new.rst:2040: WARNING: py:meth reference target not found: xray.Dataset.sel
/Users/shoyer/dev/xarray/doc/whats-new.rst:2040: WARNING: py:meth reference target not found: xray.Dataset.reindex
/Users/shoyer/dev/xarray/doc/whats-new.rst:2078: WARNING: py:class reference target not found: xray.set_options
/Users/shoyer/dev/xarray/doc/whats-new.rst:2103: WARNING: py:meth reference target not found: xray.Dataset.load
/Users/shoyer/dev/xarray/doc/whats-new.rst:2117: WARNING: py:meth reference target not found: xray.Dataset.resample
/Users/shoyer/dev/xarray/doc/whats-new.rst:2155: WARNING: py:meth reference target not found: xray.Dataset.swap_dims
/Users/shoyer/dev/xarray/doc/whats-new.rst:2165: WARNING: py:func reference target not found: xray.open_dataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:2165: WARNING: py:meth reference target not found: xray.Dataset.to_netcdf
/Users/shoyer/dev/xarray/doc/whats-new.rst:2198: WARNING: py:func reference target not found: xray.align
/Users/shoyer/dev/xarray/doc/whats-new.rst:2198: WARNING: py:meth reference target not found: xray.Dataset.reindex_like
/Users/shoyer/dev/xarray/doc/whats-new.rst:2251: WARNING: py:class reference target not found: xray.Dataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:2290: WARNING: py:meth reference target not found: xray.Dataset.reindex
/Users/shoyer/dev/xarray/doc/whats-new.rst:2303: WARNING: py:meth reference target not found: xray.Dataset.to_netcdf
/Users/shoyer/dev/xarray/doc/whats-new.rst:2305: WARNING: py:meth reference target not found: xray.Dataset.to_netcdf
/Users/shoyer/dev/xarray/doc/whats-new.rst:2308: WARNING: py:func reference target not found: xray.open_dataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:2308: WARNING: py:meth reference target not found: xray.Dataset.to_netcdf
/Users/shoyer/dev/xarray/doc/whats-new.rst:2311: WARNING: py:meth reference target not found: xray.Dataset.drop
/Users/shoyer/dev/xarray/doc/whats-new.rst:2311: WARNING: py:meth reference target not found: xray.DataArray.drop
/Users/shoyer/dev/xarray/doc/whats-new.rst:2325: WARNING: py:meth reference target not found: xray.Dataset.broadcast_equals
/Users/shoyer/dev/xarray/doc/whats-new.rst:2350: WARNING: py:meth reference target not found: xray.Dataset.to_netcdf
/Users/shoyer/dev/xarray/doc/whats-new.rst:2352: WARNING: py:meth reference target not found: xray.Dataset.drop
/Users/shoyer/dev/xarray/doc/whats-new.rst:2482: WARNING: py:meth reference target not found: xray.Dataset.count
/Users/shoyer/dev/xarray/doc/whats-new.rst:2482: WARNING: py:meth reference target not found: xray.Dataset.dropna
/Users/shoyer/dev/xarray/doc/whats-new.rst:2485: WARNING: py:meth reference target not found: xray.DataArray.to_pandas
/Users/shoyer/dev/xarray/doc/whats-new.rst:2518: WARNING: py:class reference target not found: xray.Dataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:2532: WARNING: py:meth reference target not found: xray.Dataset.equals
/Users/shoyer/dev/xarray/doc/whats-new.rst:2542: WARNING: py:meth reference target not found: xray.DataArray.reset_coords
/Users/shoyer/dev/xarray/doc/whats-new.rst:2551: WARNING: unknown document: tutorial
/Users/shoyer/dev/xarray/doc/whats-new.rst:2554: WARNING: py:class reference target not found: xray.Dataset
/Users/shoyer/dev/xarray/doc/whats-new.rst:2562: WARNING: py:meth reference target not found: xray.Dataset.load_data
/Users/shoyer/dev/xarray/doc/whats-new.rst:2562: WARNING: py:meth reference target not found: xray.Dataset.close
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1986/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
291405750 | MDU6SXNzdWUyOTE0MDU3NTA= | 1855 | swap_dims should support dimension names that are not existing variables | shoyer 1217238 | closed | 0 | 3 | 2018-01-25T00:08:26Z | 2020-01-08T18:27:29Z | 2020-01-08T18:27:29Z | MEMBER | Code Sample, a copy-pastable example if possible
Problem descriptionCurrently this results in the error Expected OutputWe now support dimensions without associated coordinate variables. So |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1855/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
346823063 | MDU6SXNzdWUzNDY4MjMwNjM= | 2337 | Test for warnings fail when using old version of pytest | shoyer 1217238 | closed | 0 | 2 | 2018-08-02T01:09:37Z | 2019-11-12T19:38:07Z | 2019-11-12T19:37:48Z | MEMBER | Some of our tests for warnings currently fail when run using an old version of pytest. The problem appears to be that we rely on pytest.warns() accepting subclasses rather exact matches. This was fixed upstream in pytest (https://github.com/pytest-dev/pytest/pull/2166), but we still should specify the more specific warning types in xarray. ``` =================================== FAILURES =================================== __ TestEncodeCFVariable.testmissing_fillvalue ____ self = <xarray.tests.test_conventions.TestEncodeCFVariable testMethod=test_missing_fillvalue>
tests/test_conventions.py:89: Failed _____ TestAlias.test _____ self = <xarray.tests.test_utils.TestAlias testMethod=test>
tests/test_utils.py:28: Failed ___ TestIndexVariable.test_coordinate_alias ______ self = <xarray.tests.test_variable.TestIndexVariable testMethod=test_coordinate_alias>
tests/test_variable.py:1752: Failed ____ TestAccessor.test_register ______ self = <xarray.tests.test_extensions.TestAccessor testMethod=test_register>
tests/test_extensions.py:60: Failed ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2337/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
511651492 | MDU6SXNzdWU1MTE2NTE0OTI= | 3440 | Build failure with pandas master | shoyer 1217238 | closed | 0 | 0 | 2019-10-24T01:27:07Z | 2019-11-08T15:33:07Z | 2019-11-08T15:33:07Z | MEMBER | Appears to be due to https://github.com/pandas-dev/pandas/pull/29062, which adds a |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3440/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
489270698 | MDU6SXNzdWU0ODkyNzA2OTg= | 3280 | Deprecation cycles to finish for xarray 0.13 | shoyer 1217238 | closed | 0 | 9 | 2019-09-04T16:37:26Z | 2019-09-17T18:50:05Z | 2019-09-17T18:50:05Z | MEMBER | Clean-ups we should definitely do:
- [x] remove deprecated options from Clean-ups to consider:
- [x] switch the default reduction dimension of groupby and resample? (https://github.com/pydata/xarray/pull/2366) This has been giving a FutureWarning since v0.11.0, released back in November 2018. We could also potentially push this back to 0.14, but these warnings are a little annoying...
- [x] deprecate |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3280/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
57254455 | MDU6SXNzdWU1NzI1NDQ1NQ== | 319 | Add head(), tail() and thin() methods? | shoyer 1217238 | closed | 0 | 10 | 2015-02-10T23:28:15Z | 2019-09-05T04:22:24Z | 2019-09-05T04:22:24Z | MEMBER | These would be shortcuts for |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/319/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
435339263 | MDU6SXNzdWU0MzUzMzkyNjM= | 2910 | Keyword argument support for drop() | shoyer 1217238 | closed | 0 | 1 | 2019-04-20T00:45:09Z | 2019-08-18T17:42:45Z | 2019-08-18T17:42:45Z | MEMBER | Currently, to drop labels along an existing dimension, you need to write something like: It would be nice if keyword arguments were supported, e.g., |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2910/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
464793626 | MDU6SXNzdWU0NjQ3OTM2MjY= | 3083 | test_rasterio_vrt_network is failing in continuous integration tests | shoyer 1217238 | closed | 0 | 3 | 2019-07-05T23:13:25Z | 2019-07-31T00:28:46Z | 2019-07-31T00:28:46Z | MEMBER | ``` @network def test_rasterio_vrt_network(self): import rasterio
xarray/tests/test_backends.py:3734: /usr/share/miniconda/envs/test_env/lib/python3.6/site-packages/rasterio/env.py:430: in wrapper return f(args, kwds) /usr/share/miniconda/envs/test_env/lib/python3.6/site-packages/rasterio/init.py:216: in open s = DatasetReader(path, driver=driver, sharing=sharing, *kwargs)
I'm not sure what's going on here -- the tiff file is still available at the given URL. @scottyhq any idea? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3083/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
246386102 | MDU6SXNzdWUyNDYzODYxMDI= | 1495 | DOC: combining datasets with different coordinates | shoyer 1217238 | closed | 0 | 2 | 2017-07-28T15:45:07Z | 2019-07-12T19:20:44Z | 2019-07-12T19:20:44Z | MEMBER | It would be nice to have documentation recipe showing how to combine datasets with different latitude/longitude arrays, as often occurs due to numerical precision issues. It's a little more complicated than just using |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1495/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
440233667 | MDU6SXNzdWU0NDAyMzM2Njc= | 2940 | test_rolling_wrapped_dask is failing with dask-master | shoyer 1217238 | closed | 0 | 5 | 2019-05-03T21:44:23Z | 2019-06-28T16:49:04Z | 2019-06-28T16:49:04Z | MEMBER | The I reproduced this locally. The source of this issue on the xarray side appears to be these lines: https://github.com/pydata/xarray/blob/dd99b7d7d8576eefcef4507ae9eb36a144b60adf/xarray/core/rolling.py#L287-L291 In particular, we are currently @fujiisoup @jhamman any idea what's going on here? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2940/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
454168102 | MDU6SXNzdWU0NTQxNjgxMDI= | 3009 | Xarray test suite failing with dask-master | shoyer 1217238 | closed | 0 | 8 | 2019-06-10T13:21:50Z | 2019-06-23T16:49:23Z | 2019-06-23T16:49:23Z | MEMBER | There are a wide variety of failures, mostly related to backends and indexing, e.g., I'm pretty sure this is due to the recent merge of the There are 81 test failures, but my guess is that there that probably only a handful (at most) of underlying causes. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3009/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
325436508 | MDU6SXNzdWUzMjU0MzY1MDg= | 2170 | keepdims=True for xarray reductions | shoyer 1217238 | closed | 0 | 3 | 2018-05-22T19:44:17Z | 2019-06-23T09:18:33Z | 2019-06-23T09:18:33Z | MEMBER | For operations where arrays are aggregated but then combined, the We should consider supporting this in xarray as well. Aggregating a DataArray/Dataset with
In case, Implementation-wise, we have two options:
1. Pass on I think I like option 2 a little better, because it places fewer requirements on aggregation functions. For example, functions like |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2170/reactions", "total_count": 10, "+1": 9, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 1 } |
completed | xarray 13221727 | issue | ||||||
430203605 | MDU6SXNzdWU0MzAyMDM2MDU= | 2876 | Custom fill value for align, reindex and reindex_like | shoyer 1217238 | closed | 0 | 2 | 2019-04-07T23:08:17Z | 2019-05-05T00:20:55Z | 2019-05-05T00:20:55Z | MEMBER | It would be nice to be able to specify a custom fill value other than NaN for alignment/reindexing, e.g., ```
This should be pretty straightforward, simplify a matter of adding a |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2876/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
435876863 | MDU6SXNzdWU0MzU4NzY4NjM= | 2914 | Behavior of da.expand_dims(da.coords) changed in 0.12.1 | shoyer 1217238 | closed | 0 | 1 | 2019-04-22T20:23:47Z | 2019-04-22T20:26:32Z | 2019-04-22T20:25:34Z | MEMBER | { "url": "https://api.github.com/repos/pydata/xarray/issues/2914/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | |||||||
29453809 | MDU6SXNzdWUyOTQ1MzgwOQ== | 66 | HDF5 backend for xray | shoyer 1217238 | closed | 0 | 15 | 2014-03-14T17:17:47Z | 2019-04-21T23:55:02Z | 2017-10-22T01:01:54Z | MEMBER | The obvious libraries to wrap are pytables or h5py: http://www.pytables.org http://h5py.org/ Both provide at least some support for in-memory operations (though I'm not sure if they can pass around HDF5 file objects without dumping them to disk). From a cursory look at the documentation for both projects, the h5py appears to offer a simpler API that would be easier to map to our existing data model. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/66/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
430189759 | MDU6SXNzdWU0MzAxODk3NTk= | 2874 | xarray/tests/test_cftimeindex_resample.py::test_resampler is way too slow | shoyer 1217238 | closed | 0 | 1 | 2019-04-07T20:38:55Z | 2019-04-11T11:42:09Z | 2019-04-11T11:42:09Z | MEMBER | Some profiling results from pytest:
This is a heavily parametrized test, and many of these test cases take 5+ seconds to run! Are there ways we could simplify these tests to make them faster? On my laptop, this test alone roughly doubles the runtime of our entire test suite, increasing it from about 2 minutes to 4 minutes. @jwenfai @spencerkclark Any ideas? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2874/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
220278600 | MDU6SXNzdWUyMjAyNzg2MDA= | 1360 | Document that aggregation functions like .mean() pass on **kwargs to dask | shoyer 1217238 | closed | 0 | 2 | 2017-04-07T17:29:47Z | 2019-04-07T19:58:58Z | 2019-04-07T19:15:49Z | MEMBER | We should also add tests to verify that invocations like xref https://github.com/dask/dask/issues/874#issuecomment-292597973 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1360/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
278713328 | MDU6SXNzdWUyNzg3MTMzMjg= | 1756 | Deprecate inplace methods | shoyer 1217238 | closed | 0 | 0.11 2856429 | 6 | 2017-12-02T20:09:00Z | 2019-03-25T19:19:10Z | 2018-11-03T21:24:13Z | MEMBER | The following methods have an As proposed in https://github.com/pydata/xarray/issues/1755#issuecomment-348682403, let's deprecate all of these at the next major release (v0.11). They add unnecessary complexity to methods and promote confusing about xarray's data model. Practically, we would change all of the default values to |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1756/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | |||||
411738552 | MDU6SXNzdWU0MTE3Mzg1NTI= | 2776 | 0.12.0 release | shoyer 1217238 | closed | 0 | 10 | 2019-02-19T04:21:35Z | 2019-03-17T01:51:55Z | 2019-03-16T04:18:21Z | MEMBER | We have quite a few nice new features merged into master. Is anything holding up making a 0.12 release shortly? cc @pydata/xarray |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2776/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
59565277 | MDU6SXNzdWU1OTU2NTI3Nw== | 353 | Some sort of API for regrouping transformed data? | shoyer 1217238 | closed | 0 | 1 | 2015-03-02T22:52:29Z | 2019-03-05T02:34:53Z | 2019-03-05T02:34:53Z | MEMBER | What is the right way to calculate a climatology and repeat the values over the original axis? The best I could come up with is:
Possibly the right solution involves something like |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/353/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
60852933 | MDU6SXNzdWU2MDg1MjkzMw== | 371 | Add a keyword argument to control how attrs are merged in concat/merge? | shoyer 1217238 | closed | 0 | 1 | 2015-03-12T16:56:53Z | 2019-03-04T18:34:53Z | 2019-03-04T18:34:53Z | MEMBER | The idea would be you could do CC @aykuznetsova |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/371/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
112085412 | MDU6SXNzdWUxMTIwODU0MTI= | 628 | Remove the encoding attribute from xray.DataArray? | shoyer 1217238 | closed | 0 | 4 | 2015-10-19T07:11:36Z | 2019-03-01T18:00:08Z | 2019-03-01T18:00:08Z | MEMBER | As described in the dev version of our documentation on encoding, we now support a keyword argument for controlling how netCDF files are written to disk with We still retain the feature that there is an "encoding" dictionary that sticks around with xray It might make sense to eliminate this feature for the sake of significantly simplifying xray's internal data model. For cases where it really matters, users can now use the Thoughts? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/628/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
166982621 | MDU6SXNzdWUxNjY5ODI2MjE= | 916 | Consider adding Dataset.filter | shoyer 1217238 | closed | 0 | 2 | 2016-07-22T07:01:53Z | 2019-02-26T04:28:23Z | 2019-02-26T04:28:23Z | MEMBER | I discovered Note that the first argument of |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/916/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
170084618 | MDU6SXNzdWUxNzAwODQ2MTg= | 954 | DataArray.copy() should create a mutable version of index coordinates | shoyer 1217238 | closed | 0 | 1 | 2016-08-09T05:25:54Z | 2019-02-26T02:28:23Z | 2019-02-26T02:28:23Z | MEMBER | It currently does not, which makes it tricky to mutate coordinates: ``` In [38]: ds = xr.Dataset(coords={'x': range(3)}) In [40]: ds.x.copy() Out[40]: <xarray.DataArray 'x' (x: 3)> array([0, 1, 2]) Coordinates: * x (x) int64 0 1 2 In [41]: other = ds.x.copy() In [42]: other[0] = 999 TypeError: Coordinate values cannot be modified ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/954/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
172498620 | MDU6SXNzdWUxNzI0OTg2MjA= | 981 | Split xarray.concat into two functions: xarray.stack and xarray.concat? | shoyer 1217238 | closed | 0 | 2 | 2016-08-22T16:38:47Z | 2019-02-25T17:28:23Z | 2019-02-25T17:28:23Z | MEMBER | Currently, This seemed convenient when I wrote For example, we need rules to decide which coordinates to expand when stacking (the confusingly named Even if we don't split the public API function, we should split it internally. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/981/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
167970086 | MDU6SXNzdWUxNjc5NzAwODY= | 920 | Plotting methods for categorical data | shoyer 1217238 | closed | 0 | 1 | 2016-07-27T22:18:08Z | 2019-02-25T09:28:23Z | 2019-02-25T09:28:23Z | MEMBER | It would be nice if we had built-in support for creating plotting 2-dimensional categorical data. Using the This plot from a Seaborn PR (https://github.com/mwaskom/seaborn/pull/629) provides an example of what legends might look like:
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/920/reactions", "total_count": 9, "+1": 9, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
127068208 | MDU6SXNzdWUxMjcwNjgyMDg= | 719 | Follow-ups on MultIndex support | shoyer 1217238 | closed | 0 | 7 | 2016-01-17T01:42:59Z | 2019-02-23T09:47:00Z | 2019-02-23T09:47:00Z | MEMBER | xref #702
- [ ] Serialization to NetCDF
- [x] Better repr, showing level names/dtypes?
- [x] Indexing a scalar at a particular level should drop that level from the MultiIndex (#767)
- [x] Make levels accessible as coordinate variables (e.g., |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/719/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
215602915 | MDU6SXNzdWUyMTU2MDI5MTU= | 1314 | xarray.Dataset.__array__ should raise TypeError | shoyer 1217238 | closed | 0 | 2 | 2017-03-21T01:27:19Z | 2019-02-19T04:23:15Z | 2019-02-19T04:23:14Z | MEMBER | This would stop NumPy from converting Dataset into an array of variable names: https://github.com/pandas-dev/pandas/pull/12400#issuecomment-287948828 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1314/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
406634780 | MDU6SXNzdWU0MDY2MzQ3ODA= | 2744 | Drop cyordereddict from optional dependencies | shoyer 1217238 | closed | 0 | 0 | 2019-02-05T05:21:28Z | 2019-02-07T18:30:01Z | 2019-02-07T18:30:01Z | MEMBER | Now that we're Python 3.5+ only, there's no reason to bother with using cyordereddict, which is slower than Python's builtin OrderedDict: https://github.com/shoyer/cyordereddict |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2744/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
101517700 | MDU6SXNzdWUxMDE1MTc3MDA= | 535 | test_cross_engine_read_write_netcdf4 is broken on Python 3 due to some sort of upstream change | shoyer 1217238 | closed | 0 | 2 | 2015-08-17T21:50:03Z | 2019-02-04T14:50:16Z | 2019-02-04T14:50:16Z | MEMBER | This has started causing test failures on master. I had trouble tracking this down, but it seems to be related to a build of hdf5, netCDF4 or the underlying libraries which just became available on conda. In case anyone else has time for it: This build worked: https://travis-ci.org/xray/xray/jobs/75633366 This build failed: https://travis-ci.org/xray/xray/jobs/75777788 For now, let's just skip the test and come back to this later. Possibly related: https://github.com/Unidata/netcdf4-python/issues/448 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/535/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
313040371 | MDU6SXNzdWUzMTMwNDAzNzE= | 2050 | test_cross_engine_read_write_netcdf3 is now failing on master | shoyer 1217238 | closed | 0 | 3 | 2018-04-10T18:31:58Z | 2019-02-04T04:42:17Z | 2019-02-04T04:42:17Z | MEMBER | Only on Python 3.5 and 3.6 for now: ``` =================================== FAILURES =================================== _ GenericNetCDFDataTest.testcross_engine_read_write_netcdf3 __ self = <xarray.tests.test_backends.GenericNetCDFDataTest testMethod=test_cross_engine_read_write_netcdf3> def test_cross_engine_read_write_netcdf3(self): data = create_test_data() valid_engines = set() if has_netCDF4: valid_engines.add('netcdf4') if has_scipy: valid_engines.add('scipy')
xarray/backends/api.py:299: in open_dataset autoclose=autoclose) xarray/backends/netCDF4_.py:280: in open ds = opener() xarray/backends/netCDF4_.py:204: in _open_netcdf4_group ds = nc4.Dataset(filename, mode=mode, **kwargs) netCDF4/_netCDF4.pyx:2015: in netCDF4._netCDF4.Dataset.init ???
xarray/backends/api.py:299: in open_dataset autoclose=autoclose) xarray/backends/netCDF4_.py:280: in open ds = opener() xarray/backends/netCDF4_.py:204: in _open_netcdf4_group ds = nc4.Dataset(filename, mode=mode, **kwargs) netCDF4/_netCDF4.pyx:2015: in netCDF4._netCDF4.Dataset.init ???
Here's the diff of conda packages:
The culprit is almost certainly libnetcdf 4.4.1.1 -> 4.5.0 It looks like it's basically this issue again: https://github.com/Unidata/netcdf-c/issues/657 We could fix this either by skipping the tests in xarray's CI or upgrading netCDF-C on conda forge to 4.6.0 or 4.6.1. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2050/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
188817665 | MDU6SXNzdWUxODg4MTc2NjU= | 1109 | Fix "allowed failures" Travis-CI builds for pydap and dev versions of netCDF4 and pandas | shoyer 1217238 | closed | 0 | 2 | 2016-11-11T18:09:10Z | 2019-02-03T03:32:21Z | 2019-02-03T03:32:21Z | MEMBER | These are useful for catching changes upstream before they turn into bugs for xarray users, but they are currently failing for spurious reasons. If someone has time to investigate and fix these, that would be great! |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1109/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
110737724 | MDU6SXNzdWUxMTA3Mzc3MjQ= | 616 | Support arithmetic with pandas.Timedelta objects | shoyer 1217238 | closed | 0 | 2 | 2015-10-09T21:19:56Z | 2019-02-02T06:25:54Z | 2019-02-02T06:25:54Z | MEMBER | This currently doesn't work, as reported in #615: ``` python from datetime import datetime, timedelta import xray import pandas as pd a = xray.Dataset({'time': [datetime(2000, 1, 1)]}) a['time'] -= pd.to_timedelta(timedelta(hours=6)) ``` ```TypeError Traceback (most recent call last) <ipython-input-7-655c9cabcf6d> in <module>() 4 5 a = xray.Dataset({'time': [datetime(2000, 1, 1)]}) ----> 6 a['time'] -= pd.to_timedelta(timedelta(hours=6)) /Users/shoyer/dev/xray/xray/core/dataarray.pyc in func(self, other) 1089 other_variable = getattr(other, 'variable', other) 1090 with self.coords._merge_inplace(other_coords): -> 1091 f(self.variable, other_variable) 1092 return self 1093 return func /Users/shoyer/dev/xray/xray/core/variable.pyc in func(self, other) 797 raise ValueError('dimensions cannot change for in-place ' 798 'operations') --> 799 self.values = f(self_data, other_data) 800 return self 801 return func TypeError: ufunc subtract cannot use operands with types dtype('<M8[ns]') and dtype('O') ``` We could fix this by adding some sort of coercion logic into |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/616/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
68759727 | MDU6SXNzdWU2ODc1OTcyNw== | 392 | Non-aggregating grouped operations on dask arrays are painfully slow to construct | shoyer 1217238 | closed | 0 | 7 | 2015-04-15T18:45:28Z | 2019-02-01T23:06:35Z | 2019-02-01T23:06:35Z | MEMBER | These are both entirely lazy operations: ```
I suspect the issue (in part) is that _interleaved_concat_slow indexes out single elements from each dask array along the grouped axis prior to concatenating them together (unit tests for interleaved_concat can be found here). So we end up creating way too many small dask arrays. Profiling results on slightly smaller data are in this gist. It would be great if we could figure out a way to make this faster, because these sort of operations are a really nice show case for xray + dask. CC @mrocklin in case you have any ideas. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/392/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
148757289 | MDU6SXNzdWUxNDg3NTcyODk= | 824 | Disable lock=True in open_mfdataset when reading netCDF3 files | shoyer 1217238 | closed | 0 | 7 | 2016-04-15T20:14:07Z | 2019-01-30T04:37:50Z | 2019-01-30T04:37:36Z | MEMBER | This slows things down unnecessarily. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/824/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
403467195 | MDU6SXNzdWU0MDM0NjcxOTU= | 2717 | Test failures with pandas 0.24.0 | shoyer 1217238 | closed | 0 | 0 | 2019-01-26T18:16:15Z | 2019-01-27T21:02:03Z | 2019-01-27T21:02:03Z | MEMBER | From a recent build on Travis-CI: ``` =================================== FAILURES =================================== ___ test_cf_timedelta[timedeltas7-days-nan] ______ timedeltas = numpy.datetime64('NaT'), units = 'days', numbers = array(nan) @pytest.mark.parametrize( ['timedeltas', 'units', 'numbers'], [('1D', 'days', np.int64(1)), (['1D', '2D', '3D'], 'days', np.array([1, 2, 3], 'int64')), ('1h', 'hours', np.int64(1)), ('1ms', 'milliseconds', np.int64(1)), ('1us', 'microseconds', np.int64(1)), (['NaT', '0s', '1s'], None, [np.nan, 0, 1]), (['30m', '60m'], 'hours', [0.5, 1.0]), (np.timedelta64('NaT', 'ns'), 'days', np.nan), (['NaT', 'NaT'], 'days', [np.nan, np.nan])]) def test_cf_timedelta(timedeltas, units, numbers): timedeltas = pd.to_timedelta(timedeltas, box=False) numbers = np.array(numbers)
timedeltas = numpy.datetime64('NaT'), units = 'days' def encode_cf_timedelta(timedeltas, units=None): if units is None: units = infer_timedelta_units(timedeltas)
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2717/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
213426608 | MDU6SXNzdWUyMTM0MjY2MDg= | 1306 | xarray vs Xarray vs XArray | shoyer 1217238 | closed | 0 | 12 | 2017-03-10T19:12:48Z | 2019-01-27T01:37:53Z | 2019-01-27T01:36:35Z | MEMBER | Yes, this is a little silly, but do we have a preferred capitalization for the proper name? We mostly stick to "xarray" in the docs but "Xarray" or "XArray" is arguably a little more readable and grammatically correct. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1306/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 2, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
402811922 | MDU6SXNzdWU0MDI4MTE5MjI= | 2705 | Docs are failing on ReadTheDocs | shoyer 1217238 | closed | 0 | 0 | 2019-01-24T17:17:04Z | 2019-01-26T18:14:50Z | 2019-01-26T18:14:50Z | MEMBER | Example failing build: https://readthedocs.org/projects/xray/builds/8443648/ I'm pretty sure the issue is the recent conda-forge issues with gdal/rasterio. https://github.com/pydata/xarray/pull/2691 fixed the doc build on Travis, but we still have the issue on ReadTheDocs. This is potentially a blocker for new xarray releases. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2705/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
168243768 | MDU6SXNzdWUxNjgyNDM3Njg= | 921 | Inconsistency between the types of Dataset.dims and DataArray.dims | shoyer 1217238 | closed | 0 | 10 | 2016-07-29T03:30:08Z | 2019-01-25T22:01:47Z | 2019-01-25T22:01:46Z | MEMBER |
One way to resolve this inconsistency would be switch Another option would be to add an attribute |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/921/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
203297784 | MDU6SXNzdWUyMDMyOTc3ODQ= | 1231 | Consider accepting a positional dict argument in place of keyword arguments | shoyer 1217238 | closed | 0 | 2 | 2017-01-26T05:57:43Z | 2019-01-24T14:02:19Z | 2019-01-24T14:02:19Z | MEMBER | Using For interactive use, this is fine -- these reserved names are rarely used and it's nice to save the keystrokes it takes to write result should be a scalar!In [35]: array[0] Out[35]: <xarray.DataArray (drop: 3)> array([1, 2, 3]) Unindexed dimensions: drop ``` One option to resolve this is to make the first argument to every function like this (including |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1231/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
207584994 | MDU6SXNzdWUyMDc1ODQ5OTQ= | 1268 | Add isin method to Dataset and DataArray | shoyer 1217238 | closed | 0 | 2 | 2017-02-14T17:37:13Z | 2019-01-23T06:59:27Z | 2019-01-23T06:59:27Z | MEMBER | This pandas method is pretty handy sometimes. We could basically wrap the proposed |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1268/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
171957028 | MDU6SXNzdWUxNzE5NTcwMjg= | 976 | Document performance tips for using dask with xarray | shoyer 1217238 | closed | 0 | 2 | 2016-08-18T17:32:14Z | 2019-01-22T20:24:15Z | 2019-01-22T20:24:15Z | MEMBER | A few dask array limitations lead to frequent performance issues for xarray users: https://github.com/dask/dask/issues/746 https://github.com/dask/dask/issues/874 Since these are non-trivial to solve on the dask side, we should document (in our page on dask) how to work around them for xarray users. This mailing list post has most of the relevant advice: https://groups.google.com/forum/#!topic/xarray/11lDGSeza78 CC @mrocklin @jcrist |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/976/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
379472634 | MDU6SXNzdWUzNzk0NzI2MzQ= | 2554 | open_mfdataset crashes with segfault | shoyer 1217238 | closed | 0 | 10 | 2018-11-10T23:34:04Z | 2019-01-17T22:16:44Z | 2019-01-17T22:16:44Z | MEMBER | Copied from the report on the xarray mailing list: This crashes with SIGSEGV: ``` foo.pyimport xarray as xr ds = xr.open_mfdataset('/tmp/nam/bufr.701940/bufr201012011.nc', data_vars='minimal', parallel=True) print(ds) ``` Traceback: ``` [gtrojan@asok precip]$ gdb python3 GNU gdb (GDB) Fedora 8.1.1-3.fc28 Copyright (C) 2018 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later http://gnu.org/licenses/gpl.html This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law. Type "show copying" and "show warranty" for details. This GDB was configured as "x86_64-redhat-linux-gnu". Type "show configuration" for configuration details. For bug reporting instructions, please see: http://www.gnu.org/software/gdb/bugs/. Find the GDB manual and other documentation resources online at: http://www.gnu.org/software/gdb/documentation/. For help, type "help". Type "apropos word" to search for commands related to "word"... Reading symbols from python3...done. (gdb) r Starting program: /mnt/sdc1/local/Python-3.6.5/bin/python3 foo.py [Thread debugging using libthread_db enabled] Using host libthread_db library "/lib64/libthread_db.so.1". [New Thread 0x7fffe6dfb700 (LWP 11176)] [New Thread 0x7fffe4dfa700 (LWP 11177)] [New Thread 0x7fffdedf9700 (LWP 11178)] [New Thread 0x7fffdadf8700 (LWP 11179)] [New Thread 0x7fffd6df7700 (LWP 11180)] [New Thread 0x7fffd2df6700 (LWP 11181)] [New Thread 0x7fffcedf5700 (LWP 11182)] warning: Loadable section ".note.gnu.property" outside of ELF segments [Thread 0x7fffdadf8700 (LWP 11179) exited] [Thread 0x7fffd2df6700 (LWP 11181) exited] [Thread 0x7fffcedf5700 (LWP 11182) exited] [Thread 0x7fffd6df7700 (LWP 11180) exited] [Thread 0x7fffdedf9700 (LWP 11178) exited] [Thread 0x7fffe4dfa700 (LWP 11177) exited] [Thread 0x7fffe6dfb700 (LWP 11176) exited] Detaching after fork from child process 11183. [New Thread 0x7fffcedf5700 (LWP 11184)] [New Thread 0x7fffe56f1700 (LWP 11185)] [New Thread 0x7fffdedf9700 (LWP 11186)] [New Thread 0x7fffdadf8700 (LWP 11187)] [New Thread 0x7fffd6df7700 (LWP 11188)] [New Thread 0x7fffd2df6700 (LWP 11189)] [New Thread 0x7fffa7fff700 (LWP 11190)] [New Thread 0x7fff9bfff700 (LWP 11191)] [New Thread 0x7fff93fff700 (LWP 11192)] [New Thread 0x7fff8bfff700 (LWP 11193)] [New Thread 0x7fff83fff700 (LWP 11194)] warning: Loadable section ".note.gnu.property" outside of ELF segments warning: Loadable section ".note.gnu.property" outside of ELF segments Thread 9 "python3" received signal SIGSEGV, Segmentation fault. [Switching to Thread 0x7fffcedf5700 (LWP 11184)] 0x00007fffbd95cca9 in H5SL_insert_common () from /usr/lib64/libhdf5.so.10 ``` This happens with the most recent dask and xarray: INSTALLED VERSIONScommit: None python: 3.6.5.final.0 python-bits: 64 OS: Linux OS-release: 4.18.14-200.fc28.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_CA.UTF-8 LOCALE: en_CA.UTF-8 xarray: 0.11.0 pandas: 0.23.0 numpy: 1.15.2 scipy: 1.1.0 netCDF4: 1.4.0 h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.0.0b1 PseudonetCDF: None rasterio: None iris: None bottleneck: 1.3.0.dev0 cyordereddict: None dask: 0.20.1 distributed: 1.22.1 matplotlib: 3.0.0 cartopy: None seaborn: 0.9.0 setuptools: 39.0.1 pip: 18.1 conda: None pytest: 3.6.3 IPython: 6.3.1 sphinx: 1.8.1 When I change the code in open_mfdataset to use parallel scheduler, the code runs as expected. ``` Line 619 in api.py: datasets, file_objs = dask.compute(datasets, file_objs)datasets, file_objs = dask.compute(datasets, file_objs, scheduler='processes') ``` The file sizes are about 300kB, my example reads only 2 files. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2554/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
60766810 | MDU6SXNzdWU2MDc2NjgxMA== | 368 | Default reading netCDF3 files with scipy.io instead of netCDF4? | shoyer 1217238 | closed | 0 | 4 | 2015-03-12T03:44:41Z | 2019-01-15T20:10:10Z | 2019-01-15T20:10:10Z | MEMBER | In my microbenchmarks, scipy.io appears to be ~3x faster than netCDF4 for reading netCDF3 files: ``` python ds = xray.Dataset({'foo': (['x', 'y'], np.random.randn(10000, 10000).astype(np.float32))}) ds.to_netcdf('test.nc', engine='scipy') ds_scipy = xray.open_dataset('test.nc', engine='scipy') ds_nc4 = xray.open_dataset('test.nc', engine='netcdf4') %timeit ds_scipy.isel(x=slice(5000)).load_data() 10 loops, best of 3: 123 ms per loop%timeit ds_nc4.isel(x=slice(5000)).load_data() 1 loops, best of 3: 319 ms per loop``` We might want to switch the default engine to use scipy for reading netCDF3 files. Note that netCDF4 does seem to be a bit faster for writing. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/368/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
44492906 | MDU6SXNzdWU0NDQ5MjkwNg== | 241 | Add example showing how to sample gridded data at points | shoyer 1217238 | closed | 0 | 4 | 2014-09-30T19:58:27Z | 2019-01-15T20:08:50Z | 2019-01-15T20:08:49Z | MEMBER | It would be good to show how to do this, even if we don't have an efficient implementation yet (#214). |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/241/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
59564663 | MDU6SXNzdWU1OTU2NDY2Mw== | 352 | Write a decorator like np.vectorize to make a DataArray functions handle Dataset objects | shoyer 1217238 | closed | 0 | 1 | 2015-03-02T22:47:15Z | 2019-01-14T21:11:54Z | 2019-01-14T21:11:53Z | MEMBER | For example, suppose I write a function to compare two DataArrays. I should be able to decorate it with something like This will make it easier for users to extend write functions to manipulate xray objects in their own code. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/352/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
187560717 | MDU6SXNzdWUxODc1NjA3MTc= | 1082 | Issue a warning when overwriting attributes with accessors instead of erroring | shoyer 1217238 | closed | 0 | 1 | 2016-11-06T13:11:52Z | 2019-01-08T21:59:36Z | 2019-01-08T21:59:36Z | MEMBER | On the mailing list, @rabernat wrote:
In #1080, @smartass101 suggests:
I think this is a good idea, and would nicely solve @rabernat's problem (which might be your problem, too). We could add a new keyword argument (e.g., Should it be the default behavior? It is also possible that warnings instead of errors are enough in general. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1082/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
395328437 | MDU6SXNzdWUzOTUzMjg0Mzc= | 2641 | pytest-runner should not be a hard-requirement in setup.py | shoyer 1217238 | closed | 0 | 0 | 2019-01-02T17:57:15Z | 2019-01-03T01:14:38Z | 2019-01-03T01:14:38Z | MEMBER | https://github.com/pydata/xarray/pull/2573 (by @horta) added This had the unintentional consequence of making pytest-runner a requirement for installing xarray. This is causing our conda-forge deployment to fail: https://github.com/conda-forge/xarray-feedstock/pull/42 We really want a "conditional requirement" only for testing as described in the pytest-runner docs: https://pypi.org/project/pytest-runner/ My plan is to do the conditional requirement, and back-port the commit to make a new 0.11.2 release. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2641/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
393903950 | MDU6SXNzdWUzOTM5MDM5NTA= | 2631 | Last call for v0.11.1 | shoyer 1217238 | closed | 0 | 3 | 2018-12-24T16:01:22Z | 2018-12-31T16:07:49Z | 2018-12-31T16:07:48Z | MEMBER | @pydata/xarray I'm going to issue v0.11.1 in a day or two, unless there's anything else we really want to squeeze in. This is the last release with planned Python 2.7 support (but we could conceivably still do backports for nasty bugs). |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2631/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
373574495 | MDU6SXNzdWUzNzM1NzQ0OTU= | 2505 | xarray 0.11 release | shoyer 1217238 | closed | 0 | 21 | 2018-10-24T16:40:51Z | 2018-11-07T19:38:40Z | 2018-11-07T16:29:53Z | MEMBER | We should really get a release candidate out soon for xarray 0.11, which will fix a lot of IO issues with dask (e.g., https://github.com/pydata/xarray/issues/2503). Deprecation cycles to finish first:
Deprecation cycles to start (optional)
These were everything tagged with the "0.11" milestone. @pydata/xarray anything else to add? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2505/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
98815388 | MDU6SXNzdWU5ODgxNTM4OA== | 511 | auto_combine/open_mfdataset can be very slow sometimes if concat_dim is not provided | shoyer 1217238 | closed | 0 | 2 | 2015-08-03T18:52:35Z | 2018-11-02T23:55:01Z | 2018-11-02T23:55:00Z | MEMBER | Through an unfortunate series of events, when cc @ToddSmall |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/511/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
374704277 | MDU6SXNzdWUzNzQ3MDQyNzc= | 2521 | test_infer_cftime_datetime_units failing on Windows | shoyer 1217238 | closed | 0 | 0 | 2018-10-28T00:40:31Z | 2018-10-30T01:00:43Z | 2018-10-30T01:00:43Z | MEMBER | I don't know why, but this test is now failing on Python 2.7 / Windows: https://ci.appveyor.com/project/shoyer/xray/builds/19850608 ``` ================================== FAILURES =================================== ____ test_infer_cftime_datetime_units _____ @pytest.mark.skipif(not has_cftime_or_netCDF4, reason='cftime not installed') def test_infer_cftime_datetime_units(): date_types = _all_cftime_date_types() for date_type in date_types.values(): for dates, expected in [ ([date_type(1900, 1, 1), date_type(1900, 1, 2)], 'days since 1900-01-01 00:00:00.000000'), ([date_type(1900, 1, 1, 12), date_type(1900, 1, 1, 13)], 'seconds since 1900-01-01 12:00:00.000000'), ([date_type(1900, 1, 1), date_type(1900, 1, 2), date_type(1900, 1, 2, 0, 0, 1)], 'seconds since 1900-01-01 00:00:00.000000'), ([date_type(1900, 1, 1), date_type(1900, 1, 2, 0, 0, 0, 5)], 'days since 1900-01-01 00:00:00.000000'), ([date_type(1900, 1, 1), date_type(1900, 1, 8), date_type(1900, 1, 16)], 'days since 1900-01-01 00:00:00.000000')]:
@spencerkclark please take a look (or we can xfail this if necessary) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2521/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
224200714 | MDU6SXNzdWUyMjQyMDA3MTQ= | 1384 | tutorial.load_dataset() should prevent against partial downloads | shoyer 1217238 | closed | 0 | 1 | 2017-04-25T16:39:50Z | 2018-10-17T17:16:59Z | 2018-10-17T17:16:59Z | MEMBER | To avoid issues like this one: https://groups.google.com/forum/#!topic/xarray/F5UKkZZsMec The easiest way to do this is to write to a temporary file and only move it to the correct location when the download completes. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1384/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
369310993 | MDU6SXNzdWUzNjkzMTA5OTM= | 2480 | test_apply_dask_new_output_dimension is broken on master with dask-dev | shoyer 1217238 | closed | 0 | 6 | 2018-10-11T21:24:33Z | 2018-10-12T16:26:17Z | 2018-10-12T16:26:17Z | MEMBER | Example build failure: https://travis-ci.org/pydata/xarray/jobs/439949937 ``` =================================== FAILURES =================================== ___ test_apply_dask_new_output_dimension ___ @requires_dask def test_apply_dask_new_output_dimension(): import dask.array as da
xarray/tests/test_computation.py:24: in assert_identical assert a.identical(b), msg xarray/core/dataarray.py:1923: in identical self._all_compat(other, 'identical')) xarray/core/dataarray.py:1875: in _all_compat compat(self, other)) xarray/core/dataarray.py:1872: in compat return getattr(x.variable, compat_str)(y.variable) xarray/core/variable.py:1461: in identical self.equals(other)) xarray/core/variable.py:1439: in equals equiv(self.data, other.data))) xarray/core/duck_array_ops.py:144: in array_equiv arr1, arr2 = as_like_arrays(arr1, arr2) xarray/core/duck_array_ops.py:128: in as_like_arrays return tuple(np.asarray(d) for d in data) xarray/core/duck_array_ops.py:128: in <genexpr> return tuple(np.asarray(d) for d in data) ../../../miniconda/envs/test_env/lib/python3.6/site-packages/numpy/core/numeric.py:501: in asarray return array(a, dtype, copy=False, order=order) ../../../miniconda/envs/test_env/lib/python3.6/site-packages/dask/array/core.py:1118: in array x = self.compute() ../../../miniconda/envs/test_env/lib/python3.6/site-packages/dask/base.py:156: in compute (result,) = compute(self, traverse=False, kwargs) ../../../miniconda/envs/test_env/lib/python3.6/site-packages/dask/base.py:390: in compute dsk = collections_to_dsk(collections, optimize_graph, kwargs) ../../../miniconda/envs/test_env/lib/python3.6/site-packages/dask/base.py:194: in collections_to_dsk for opt, (dsk, keys) in groups.items()])) ../../../miniconda/envs/test_env/lib/python3.6/site-packages/dask/base.py:194: in <listcomp> for opt, (dsk, keys) in groups.items()])) ../../../miniconda/envs/test_env/lib/python3.6/site-packages/dask/array/optimization.py:41: in optimize dsk = ensure_dict(dsk) ../../../miniconda/envs/test_env/lib/python3.6/site-packages/dask/utils.py:830: in ensure_dict result.update(dd) ../../../miniconda/envs/test_env/lib/python3.6/_collections_abc.py:720: in iter yield from self._mapping ../../../miniconda/envs/test_env/lib/python3.6/site-packages/dask/array/top.py:168: in iter return iter(self._dict) ../../../miniconda/envs/test_env/lib/python3.6/site-packages/dask/array/top.py:160: in _dict concatenate=self.concatenate ../../../miniconda/envs/test_env/lib/python3.6/site-packages/dask/array/top.py:305: in top keytups = list(itertools.product(*[range(dims[i]) for i in out_indices])) .0 = <tuple_iterator object at 0x7f606ba84fd0>
My guess is that this is somehow related to @mrocklin's recent refactor of dask.array.atop: https://github.com/dask/dask/pull/3998 If the cause isn't obvious, I'll try to come up with a simple dask only example that reproduces it. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2480/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
276241193 | MDU6SXNzdWUyNzYyNDExOTM= | 1738 | Windows/Python 2.7 tests of dask-distributed failing on master/v0.10.0 | shoyer 1217238 | closed | 0 | 12 | 2017-11-23T00:42:29Z | 2018-10-09T04:13:41Z | 2018-10-09T04:13:41Z | MEMBER | Python 2.7 builds on Windows are failing: https://ci.appveyor.com/project/shoyer/xray/build/1.0.3018 The tests that are failing are all variations of
C:\Python27-conda64\envs\test_env\lib\contextlib.py:24: in exit self.gen.next() C:\Python27-conda64\envs\test_env\lib\site-packages\distributed\utils_test.py:139: in pristine_loop loop.close(all_fds=True) C:\Python27-conda64\envs\test_env\lib\site-packages\tornado\ioloop.py:716: in close self.remove_handler(self._waker.fileno()) C:\Python27-conda64\envs\test_env\lib\site-packages\tornado\platform\common.py:91: in fileno return self.reader.fileno() C:\Python27-conda64\envs\test_env\lib\socket.py:228: in meth return getattr(self._sock,name)(*args) args = (<socket._closedsocket object at 0x00000000131F27F0>, 'fileno') def _dummy(*args):
@mrocklin any guesses about what this could be? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1738/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
364148137 | MDU6SXNzdWUzNjQxNDgxMzc= | 2441 | hypothesis tests are failing on master | shoyer 1217238 | closed | 0 | 1 | 2018-09-26T18:08:15Z | 2018-09-26T23:47:27Z | 2018-09-26T23:47:27Z | MEMBER | Example failure: https://travis-ci.org/pydata/xarray/jobs/433231165
cc @Zac-HD |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2441/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
361915770 | MDU6SXNzdWUzNjE5MTU3NzA= | 2424 | 0.10.9 release | shoyer 1217238 | closed | 0 | 6 | 2018-09-19T20:31:29Z | 2018-09-26T01:05:09Z | 2018-09-22T15:14:48Z | MEMBER | It's now been two months since the 0.10.8 release, so we really ought to issue a new minor release. I was initially thinking of skipping straight to 0.11.0 if we include https://github.com/pydata/xarray/pull/2261 (xarray.backends refactor), but it seems that will take a bit longer to review/test so it's probably worth issuing a 0.10.9 release first. @pydata/xarray -- are there any PRs / bug-fixes in particular we should wait for before issuing the release? I suppose it would be good to sort out https://github.com/pydata/xarray/issues/2422 (Plot2D no longer sorts coordinates before plotting) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2424/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
328572578 | MDU6SXNzdWUzMjg1NzI1Nzg= | 2209 | Build timeouts on ReadTheDocs | shoyer 1217238 | closed | 0 | 4 | 2018-06-01T15:53:48Z | 2018-09-20T16:39:58Z | 2018-09-20T16:39:58Z | MEMBER | A significant fraction of our doc builds have started running up against ReadTheDocs's 900 second timeout for builds:
Investigating a few of these, it seems that the main culprit is installing/downloading conda packages in the |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2209/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
346313546 | MDU6SXNzdWUzNDYzMTM1NDY= | 2332 | Test failures on master with DataArray.to_cdms2 | shoyer 1217238 | closed | 0 | 3 | 2018-07-31T18:49:21Z | 2018-09-05T15:18:45Z | 2018-09-05T15:18:45Z | MEMBER | See https://travis-ci.org/pydata/xarray/jobs/410459646 Example failure: ``` =================================== FAILURES =================================== __ TestDataArray.testto_and_from_cdms2_classic ___ self = <xarray.tests.test_dataarray.TestDataArray testMethod=test_to_and_from_cdms2_classic> def test_to_and_from_cdms2_classic(self): """Classic with 1D axes""" pytest.importorskip('cdms2')
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2332/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
138504881 | MDU6SXNzdWUxMzg1MDQ4ODE= | 785 | Add dictionary key-completions for xarray objects in IPython | shoyer 1217238 | closed | 0 | 1 | 2016-03-04T15:38:16Z | 2018-09-04T12:13:17Z | 2018-09-04T12:13:17Z | MEMBER | This will work in the next IPython release if we add |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/785/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);