issues
8 rows where repo = 13221727 and user = 490531 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, updated_at, closed_at, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1044363666 | PR_kwDOAMm_X84uE2qZ | 5936 | Fix a missing @requires_zarr in tests | ArchangeGabriel 490531 | closed | 0 | 3 | 2021-11-04T04:49:39Z | 2021-11-04T10:12:58Z | 2021-11-04T10:12:46Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5936 | When zarr is not available, this test fails with Full trace``` __________________________ test_zarr_storage_options ___________________________ @requires_fsspec def test_zarr_storage_options(): pytest.importorskip("aiobotocore") ds = create_test_data() store_target = "memory://test.zarr" > ds.to_zarr(store_target, storage_options={"test": "zarr_write"}) /build/python-xarray/src/xarray-0.20.0/xarray/tests/test_backends.py:2406: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /build/python-xarray/src/xarray-0.20.0/xarray/core/dataset.py:2037: in to_zarr return to_zarr( /build/python-xarray/src/xarray-0.20.0/xarray/backends/api.py:1391: in to_zarr zstore = backends.ZarrStore.open_group( _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ cls = <class 'xarray.backends.zarr.ZarrStore'> store = <fsspec.mapping.FSMap object at 0x7f074691cfd0>, mode = 'w-' synchronizer = None, group = None, consolidated = False consolidate_on_close = True, chunk_store = None, storage_options = None append_dim = None, write_region = None, safe_chunks = True, stacklevel = 4 @classmethod def open_group( cls, store, mode="r", synchronizer=None, group=None, consolidated=False, consolidate_on_close=False, chunk_store=None, storage_options=None, append_dim=None, write_region=None, safe_chunks=True, stacklevel=2, ): # zarr doesn't support pathlib.Path objects yet. zarr-python#601 if isinstance(store, os.PathLike): store = os.fspath(store) open_kwargs = dict( mode=mode, synchronizer=synchronizer, path=group, ) open_kwargs["storage_options"] = storage_options if chunk_store: open_kwargs["chunk_store"] = chunk_store if consolidated is None: consolidated = False if consolidated is None: try: zarr_group = zarr.open_consolidated(store, **open_kwargs) except KeyError: warnings.warn( "Failed to open Zarr store with consolidated metadata, " "falling back to try reading non-consolidated metadata. " "This is typically much slower for opening a dataset. " "To silence this warning, consider:\n" "1. Consolidating metadata in this existing store with " "zarr.consolidate_metadata().\n" "2. Explicitly setting consolidated=False, to avoid trying " "to read consolidate metadata, or\n" "3. Explicitly setting consolidated=True, to raise an " "error in this case instead of falling back to try " "reading non-consolidated metadata.", RuntimeWarning, stacklevel=stacklevel, ) zarr_group = zarr.open_group(store, **open_kwargs) elif consolidated: # TODO: an option to pass the metadata_key keyword zarr_group = zarr.open_consolidated(store, **open_kwargs) else: > zarr_group = zarr.open_group(store, **open_kwargs) E NameError: name 'zarr' is not defined /build/python-xarray/src/xarray-0.20.0/xarray/backends/zarr.py:386: NameError ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5936/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
667055142 | MDU6SXNzdWU2NjcwNTUxNDI= | 4281 | Test failure in test_serializable_locks | ArchangeGabriel 490531 | open | 0 | 2 | 2020-07-28T13:02:56Z | 2021-06-05T18:20:30Z | CONTRIBUTOR | What happened: The mentioned test failed. What you expected to happen: It should work? Minimal Complete Verifiable Example:
Anything else we need to know?: Full excerpt: ``` _____ test_serializable_locks ________
/usr/lib/python3.8/site-packages/distributed/utils_test.py:953: /usr/lib/python3.8/site-packages/tornado/ioloop.py:532: in run_sync return future_cell[0].result() /usr/lib/python3.8/site-packages/distributed/utils_test.py:912: in coro result = await future fut = <Task cancelled name='Task-701' coro=\<test_serializable_locks() done, defined at /build/python-xarray/src/xarray-0.16.0/xarray/tests/test_distributed.py:220>> timeout = 10
/usr/lib/python3.8/asyncio/tasks.py:490: TimeoutError ----------------------------- Captured stderr call ----------------------------- distributed.scheduler - INFO - Clear task state distributed.scheduler - INFO - Scheduler at: tcp://127.0.0.1:40483 distributed.scheduler - INFO - dashboard at: 127.0.0.1:8787 distributed.worker - INFO - Start worker at: tcp://127.0.0.1:45589 distributed.worker - INFO - Listening to: tcp://127.0.0.1:45589 distributed.worker - INFO - dashboard at: 127.0.0.1:43247 distributed.worker - INFO - Waiting to connect to: tcp://127.0.0.1:40483 distributed.worker - INFO - ------------------------------------------------- distributed.worker - INFO - Threads: 1 distributed.worker - INFO - Memory: 135.05 GB distributed.worker - INFO - Local Directory: /build/python-xarray/src/xarray-0.16.0/dask-worker-space/worker-nbb_tie4 distributed.worker - INFO - ------------------------------------------------- distributed.worker - INFO - Start worker at: tcp://127.0.0.1:40153 distributed.worker - INFO - Listening to: tcp://127.0.0.1:40153 distributed.worker - INFO - dashboard at: 127.0.0.1:33037 distributed.worker - INFO - Waiting to connect to: tcp://127.0.0.1:40483 distributed.worker - INFO - ------------------------------------------------- distributed.worker - INFO - Threads: 2 distributed.worker - INFO - Memory: 135.05 GB distributed.worker - INFO - Local Directory: /build/python-xarray/src/xarray-0.16.0/dask-worker-space/worker-qyb14fl2 distributed.worker - INFO - ------------------------------------------------- distributed.scheduler - INFO - Register worker <Worker 'tcp://127.0.0.1:45589', name: 0, memory: 0, processing: 0> distributed.scheduler - INFO - Starting worker compute stream, tcp://127.0.0.1:45589 distributed.core - INFO - Starting established connection distributed.scheduler - INFO - Register worker <Worker 'tcp://127.0.0.1:40153', name: 1, memory: 0, processing: 0> distributed.scheduler - INFO - Starting worker compute stream, tcp://127.0.0.1:40153 distributed.core - INFO - Starting established connection distributed.worker - INFO - Registered to: tcp://127.0.0.1:40483 distributed.worker - INFO - ------------------------------------------------- distributed.worker - INFO - Registered to: tcp://127.0.0.1:40483 distributed.worker - INFO - ------------------------------------------------- distributed.core - INFO - Starting established connection distributed.core - INFO - Starting established connection distributed.scheduler - INFO - Receive client connection: Client-01142bc3-d0d0-11ea-84a5-6cb311234570 distributed.core - INFO - Starting established connection distributed.protocol.pickle - INFO - Failed to serialize (<function apply at 0x7f8c2cb36940>, <function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (<class 'tuple'>, [0]), {'lock': <SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>}). Exception: dumps() got an unexpected keyword argument 'buffer_callback' distributed.protocol.core - CRITICAL - Failed to Serialize Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/distributed/protocol/core.py", line 36, in dumps data = { File "/usr/lib/python3.8/site-packages/distributed/protocol/core.py", line 37, in <dictcomp> key: serialize( File "/usr/lib/python3.8/site-packages/distributed/protocol/serialize.py", line 244, in serialize raise TypeError(msg, str(x)[:10000]) TypeError: ('Could not serialize object of type tuple.', "(<function apply at 0x7f8c2cb36940>, <function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (<class 'tuple'>, [0]), {'lock': <SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>})") distributed.comm.utils - INFO - Unserializable Message: [{'op': 'update-graph', 'tasks': {'f-e71c719fc7843a71d9b6ed77ba5c1139': <Serialize: (\<function apply at 0x7f8c2cb36940>, \<function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (\<class 'tuple'>, [0]), {'lock': \<SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>})>, 'f-3e2e39666f6b20c1585ae513bd6c58a1': <Serialize: (\<function apply at 0x7f8c2cb36940>, \<function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (\<class 'tuple'>, [1]), {'lock': \<SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>})>, 'f-92de0310d2e920306d74497bcdbd21f1': <Serialize: (\<function apply at 0x7f8c2cb36940>, \<function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (\<class 'tuple'>, [2]), {'lock': \<SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>})>, 'f-f210a433c90cbabd4a839e5957c2ef7c': <Serialize: (\<function apply at 0x7f8c2cb36940>, \<function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (\<class 'tuple'>, [3]), {'lock': \<SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>})>, 'f-5ecad7d214286d3d4cb2c0f51d71596c': <Serialize: (\<function apply at 0x7f8c2cb36940>, \<function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (\<class 'tuple'>, [4]), {'lock': \<SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>})>, 'f-662771094d226039899ae3b5f21c6184': <Serialize: (\<function apply at 0x7f8c2cb36940>, \<function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (\<class 'tuple'>, [5]), {'lock': \<SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>})>, 'f-6aa952faad415c3c2dab888f1e97135e': <Serialize: (\<function apply at 0x7f8c2cb36940>, \<function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (\<class 'tuple'>, [6]), {'lock': \<SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>})>, 'f-c5a149b0b56aa271ac0e5456fcbd0c7c': <Serialize: (\<function apply at 0x7f8c2cb36940>, \<function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (\<class 'tuple'>, [7]), {'lock': \<SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>})>, 'f-2d7b671f31682ff35e7b351af7c5ca2b': <Serialize: (\<function apply at 0x7f8c2cb36940>, \<function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (\<class 'tuple'>, [8]), {'lock': \<SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>})>, 'f-0f7fc14155cfae899da1d79302c723c1': <Serialize: (\<function apply at 0x7f8c2cb36940>, \<function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (\<class 'tuple'>, [9]), {'lock': \<SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>})>}, 'dependencies': {}, 'keys': ['f-e71c719fc7843a71d9b6ed77ba5c1139', 'f-3e2e39666f6b20c1585ae513bd6c58a1', 'f-92de0310d2e920306d74497bcdbd21f1', 'f-f210a433c90cbabd4a839e5957c2ef7c', 'f-5ecad7d214286d3d4cb2c0f51d71596c', 'f-662771094d226039899ae3b5f21c6184', 'f-6aa952faad415c3c2dab888f1e97135e', 'f-c5a149b0b56aa271ac0e5456fcbd0c7c', 'f-2d7b671f31682ff35e7b351af7c5ca2b', 'f-0f7fc14155cfae899da1d79302c723c1'], 'restrictions': {}, 'loose_restrictions': [], 'priority': {'f-e71c719fc7843a71d9b6ed77ba5c1139': 0, 'f-3e2e39666f6b20c1585ae513bd6c58a1': 1, 'f-92de0310d2e920306d74497bcdbd21f1': 2, 'f-f210a433c90cbabd4a839e5957c2ef7c': 3, 'f-5ecad7d214286d3d4cb2c0f51d71596c': 4, 'f-662771094d226039899ae3b5f21c6184': 5, 'f-6aa952faad415c3c2dab888f1e97135e': 6, 'f-c5a149b0b56aa271ac0e5456fcbd0c7c': 7, 'f-2d7b671f31682ff35e7b351af7c5ca2b': 8, 'f-0f7fc14155cfae899da1d79302c723c1': 9}, 'user_priority': 0, 'resources': None, 'submitting_task': None, 'retries': None, 'fifo_timeout': '100 ms', 'actors': False}] distributed.comm.utils - ERROR - ('Could not serialize object of type tuple.', "(<function apply at 0x7f8c2cb36940>, <function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (<class 'tuple'>, [0]), {'lock': <SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>})") Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/distributed/comm/utils.py", line 34, in _to_frames protocol.dumps( File "/usr/lib/python3.8/site-packages/distributed/protocol/core.py", line 36, in dumps data = { File "/usr/lib/python3.8/site-packages/distributed/protocol/core.py", line 37, in <dictcomp> key: serialize( File "/usr/lib/python3.8/site-packages/distributed/protocol/serialize.py", line 244, in serialize raise TypeError(msg, str(x)[:10000]) TypeError: ('Could not serialize object of type tuple.', "(<function apply at 0x7f8c2cb36940>, <function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (<class 'tuple'>, [0]), {'lock': <SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>})") distributed.batched - ERROR - Error in batched write Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/distributed/batched.py", line 92, in _background_send nbytes = yield self.comm.write( File "/usr/lib/python3.8/site-packages/tornado/gen.py", line 735, in run value = future.result() File "/usr/lib/python3.8/site-packages/distributed/comm/tcp.py", line 220, in write frames = await to_frames( File "/usr/lib/python3.8/site-packages/distributed/comm/utils.py", line 54, in to_frames return _to_frames() File "/usr/lib/python3.8/site-packages/distributed/comm/utils.py", line 34, in _to_frames protocol.dumps( File "/usr/lib/python3.8/site-packages/distributed/protocol/core.py", line 36, in dumps data = { File "/usr/lib/python3.8/site-packages/distributed/protocol/core.py", line 37, in <dictcomp> key: serialize( File "/usr/lib/python3.8/site-packages/distributed/protocol/serialize.py", line 244, in serialize raise TypeError(msg, str(x)[:10000]) TypeError: ('Could not serialize object of type tuple.', "(<function apply at 0x7f8c2cb36940>, <function test_serializable_locks.\<locals>.f at 0x7f8c1da0e040>, (<class 'tuple'>, [0]), {'lock': <SerializableLock: 789a59f0-0049-40aa-a0ed-0f2fe6c213a8>})") distributed.scheduler - INFO - Remove client Client-01142bc3-d0d0-11ea-84a5-6cb311234570 distributed.scheduler - INFO - Remove client Client-01142bc3-d0d0-11ea-84a5-6cb311234570 distributed.scheduler - INFO - Close client connection: Client-01142bc3-d0d0-11ea-84a5-6cb311234570 distributed.worker - INFO - Stopping worker at tcp://127.0.0.1:45589 distributed.worker - INFO - Stopping worker at tcp://127.0.0.1:40153 distributed.scheduler - INFO - Remove worker <Worker 'tcp://127.0.0.1:45589', name: 0, memory: 0, processing: 0> distributed.core - INFO - Removing comms to tcp://127.0.0.1:45589 distributed.scheduler - INFO - Remove worker <Worker 'tcp://127.0.0.1:40153', name: 1, memory: 0, processing: 0> distributed.core - INFO - Removing comms to tcp://127.0.0.1:40153 distributed.scheduler - INFO - Lost all workers distributed.scheduler - INFO - Scheduler closing... distributed.scheduler - INFO - Scheduler closing all comms ------------------------------ Captured log call ------------------------------- ERROR asyncio:base_events.py:1707 Task exception was never retrieved future: <Task finished name='Task-702' coro=\<Client._gather.\<locals>.wait() done, defined at /usr/lib/python3.8/site-packages/distributed/client.py:1816> exception=AllExit()> Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/distributed/client.py", line 1821, in wait raise AllExit() distributed.client.AllExit ERROR asyncio:base_events.py:1707 Task exception was never retrieved future: <Task finished name='Task-703' coro=\<Client._gather.\<locals>.wait() done, defined at /usr/lib/python3.8/site-packages/distributed/client.py:1816> exception=AllExit()> Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/distributed/client.py", line 1821, in wait raise AllExit() distributed.client.AllExit ERROR asyncio:base_events.py:1707 Task exception was never retrieved future: <Task finished name='Task-704' coro=\<Client._gather.\<locals>.wait() done, defined at /usr/lib/python3.8/site-packages/distributed/client.py:1816> exception=AllExit()> Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/distributed/client.py", line 1821, in wait raise AllExit() distributed.client.AllExit ERROR asyncio:base_events.py:1707 Task exception was never retrieved future: <Task finished name='Task-705' coro=\<Client._gather.\<locals>.wait() done, defined at /usr/lib/python3.8/site-packages/distributed/client.py:1816> exception=AllExit()> Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/distributed/client.py", line 1821, in wait raise AllExit() distributed.client.AllExit ERROR asyncio:base_events.py:1707 Task exception was never retrieved future: <Task finished name='Task-706' coro=\<Client._gather.\<locals>.wait() done, defined at /usr/lib/python3.8/site-packages/distributed/client.py:1816> exception=AllExit()> Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/distributed/client.py", line 1821, in wait raise AllExit() distributed.client.AllExit ERROR asyncio:base_events.py:1707 Task exception was never retrieved future: <Task finished name='Task-707' coro=\<Client._gather.\<locals>.wait() done, defined at /usr/lib/python3.8/site-packages/distributed/client.py:1816> exception=AllExit()> Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/distributed/client.py", line 1821, in wait raise AllExit() distributed.client.AllExit ERROR asyncio:base_events.py:1707 Task exception was never retrieved future: <Task finished name='Task-708' coro=\<Client._gather.\<locals>.wait() done, defined at /usr/lib/python3.8/site-packages/distributed/client.py:1816> exception=AllExit()> Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/distributed/client.py", line 1821, in wait raise AllExit() distributed.client.AllExit ERROR asyncio:base_events.py:1707 Task exception was never retrieved future: <Task finished name='Task-709' coro=\<Client._gather.\<locals>.wait() done, defined at /usr/lib/python3.8/site-packages/distributed/client.py:1816> exception=AllExit()> Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/distributed/client.py", line 1821, in wait raise AllExit() distributed.client.AllExit ERROR asyncio:base_events.py:1707 Task exception was never retrieved future: <Task finished name='Task-710' coro=\<Client._gather.\<locals>.wait() done, defined at /usr/lib/python3.8/site-packages/distributed/client.py:1816> exception=AllExit()> Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/distributed/client.py", line 1821, in wait raise AllExit() distributed.client.AllExit ERROR asyncio:base_events.py:1707 Task exception was never retrieved future: <Task finished name='Task-711' coro=\<Client._gather.\<locals>.wait() done, defined at /usr/lib/python3.8/site-packages/distributed/client.py:1816> exception=AllExit()> Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/distributed/client.py", line 1821, in wait raise AllExit() distributed.client.AllExit ``` Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.8.4 (default, Jul 15 2020, 10:38:22) [GCC 10.1.0] python-bits: 64 OS: Linux OS-release: 5.7.8-arch1-1 machine: x86_64 processor: byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.12.0 libnetcdf: 4.7.4 xarray: 0.16.0 pandas: 1.0.5 numpy: 1.19.1 scipy: 1.5.2 netCDF4: 1.5.4 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.2.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.3.2 dask: 2.21.0 distributed: 2.21.0 matplotlib: 3.3.0 cartopy: None seaborn: 0.10.1 numbagg: None pint: 0.0.0 setuptools: 49.2.0 pip: None conda: None pytest: 5.4.3 IPython: None sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4281/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
832404698 | MDU6SXNzdWU4MzI0MDQ2OTg= | 5038 | [tests] ImportError: Pandas requires version '0.12.3' or newer of 'xarray' (version '0.0.0' currently installed). | ArchangeGabriel 490531 | closed | 0 | 11 | 2021-03-16T04:44:23Z | 2021-03-16T20:15:38Z | 2021-03-16T20:03:33Z | CONTRIBUTOR | What happened: I’m running tests of xarray while building it for packaging (Arch Linux), and they are 6 tests failures, all with this error message. What you expected to happen: Tests should work. I’m not sure why a version 0.0.0 is reported while running tests in the build environment. Full error log``` __________________ TestDataArray.test_from_series_multiindex ___________________ self = <xarray.tests.test_dataarray.TestDataArray object at 0x7fcb3b23c2b0> def test_from_series_multiindex(self): # GH:3951 df = pd.DataFrame({"B": [1, 2, 3], "A": [4, 5, 6]}) df = df.rename_axis("num").rename_axis("alpha", axis=1) > actual = df.stack("alpha").to_xarray() /build/python-xarray/src/xarray-0.17.0/xarray/tests/test_dataarray.py:3697: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /usr/lib/python3.9/site-packages/pandas/core/generic.py:3011: in to_xarray xarray = import_optional_dependency("xarray") _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ name = 'xarray', extra = '', raise_on_missing = True, on_version = 'raise' def import_optional_dependency( name: str, extra: str = "", raise_on_missing: bool = True, on_version: str = "raise" ): """ Import an optional dependency. By default, if a dependency is missing an ImportError with a nice message will be raised. If a dependency is present, but too old, we raise. Parameters ---------- name : str The module name. This should be top-level only, so that the version may be checked. extra : str Additional text to include in the ImportError message. raise_on_missing : bool, default True Whether to raise if the optional dependency is not found. When False and the module is not present, None is returned. on_version : str {'raise', 'warn'} What to do when a dependency's version is too old. * raise : Raise an ImportError * warn : Warn that the version is too old. Returns None * ignore: Return the module, even if the version is too old. It's expected that users validate the version locally when using ``on_version="ignore"`` (see. ``io/html.py``) Returns ------- maybe_module : Optional[ModuleType] The imported module, when found and the version is correct. None is returned when the package is not found and `raise_on_missing` is False, or when the package's version is too old and `on_version` is ``'warn'``. """ package_name = INSTALL_MAPPING.get(name) install_name = package_name if package_name is not None else name msg = ( f"Missing optional dependency '{install_name}'. {extra} " f"Use pip or conda to install {install_name}." ) try: module = importlib.import_module(name) except ImportError: if raise_on_missing: raise ImportError(msg) from None else: return None minimum_version = VERSIONS.get(name) if minimum_version: version = get_version(module) if distutils.version.LooseVersion(version) < minimum_version: assert on_version in {"warn", "raise", "ignore"} msg = ( f"Pandas requires version '{minimum_version}' or newer of '{name}' " f"(version '{version}' currently installed)." ) if on_version == "warn": warnings.warn(msg, UserWarning) return None elif on_version == "raise": > raise ImportError(msg) E ImportError: Pandas requires version '0.12.3' or newer of 'xarray' (version '0.0.0' currently installed). /usr/lib/python3.9/site-packages/pandas/compat/_optional.py:126: ImportError _______________________ TestDataset.test_sel_categorical _______________________ self = <xarray.tests.test_dataset.TestDataset object at 0x7fcb3afb8640> def test_sel_categorical(self): ind = pd.Series(["foo", "bar"], dtype="category") df = pd.DataFrame({"ind": ind, "values": [1, 2]}) > ds = df.set_index("ind").to_xarray() /build/python-xarray/src/xarray-0.17.0/xarray/tests/test_dataset.py:1432: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /usr/lib/python3.9/site-packages/pandas/core/generic.py:3011: in to_xarray xarray = import_optional_dependency("xarray") _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ name = 'xarray', extra = '', raise_on_missing = True, on_version = 'raise' def import_optional_dependency( name: str, extra: str = "", raise_on_missing: bool = True, on_version: str = "raise" ): """ Import an optional dependency. By default, if a dependency is missing an ImportError with a nice message will be raised. If a dependency is present, but too old, we raise. Parameters ---------- name : str The module name. This should be top-level only, so that the version may be checked. extra : str Additional text to include in the ImportError message. raise_on_missing : bool, default True Whether to raise if the optional dependency is not found. When False and the module is not present, None is returned. on_version : str {'raise', 'warn'} What to do when a dependency's version is too old. * raise : Raise an ImportError * warn : Warn that the version is too old. Returns None * ignore: Return the module, even if the version is too old. It's expected that users validate the version locally when using ``on_version="ignore"`` (see. ``io/html.py``) Returns ------- maybe_module : Optional[ModuleType] The imported module, when found and the version is correct. None is returned when the package is not found and `raise_on_missing` is False, or when the package's version is too old and `on_version` is ``'warn'``. """ package_name = INSTALL_MAPPING.get(name) install_name = package_name if package_name is not None else name msg = ( f"Missing optional dependency '{install_name}'. {extra} " f"Use pip or conda to install {install_name}." ) try: module = importlib.import_module(name) except ImportError: if raise_on_missing: raise ImportError(msg) from None else: return None minimum_version = VERSIONS.get(name) if minimum_version: version = get_version(module) if distutils.version.LooseVersion(version) < minimum_version: assert on_version in {"warn", "raise", "ignore"} msg = ( f"Pandas requires version '{minimum_version}' or newer of '{name}' " f"(version '{version}' currently installed)." ) if on_version == "warn": warnings.warn(msg, UserWarning) return None elif on_version == "raise": > raise ImportError(msg) E ImportError: Pandas requires version '0.12.3' or newer of 'xarray' (version '0.0.0' currently installed). /usr/lib/python3.9/site-packages/pandas/compat/_optional.py:126: ImportError ____________________ TestDataset.test_sel_categorical_error ____________________ self = <xarray.tests.test_dataset.TestDataset object at 0x7fcb3b199220> def test_sel_categorical_error(self): ind = pd.Series(["foo", "bar"], dtype="category") df = pd.DataFrame({"ind": ind, "values": [1, 2]}) > ds = df.set_index("ind").to_xarray() /build/python-xarray/src/xarray-0.17.0/xarray/tests/test_dataset.py:1440: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /usr/lib/python3.9/site-packages/pandas/core/generic.py:3011: in to_xarray xarray = import_optional_dependency("xarray") _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ name = 'xarray', extra = '', raise_on_missing = True, on_version = 'raise' def import_optional_dependency( name: str, extra: str = "", raise_on_missing: bool = True, on_version: str = "raise" ): """ Import an optional dependency. By default, if a dependency is missing an ImportError with a nice message will be raised. If a dependency is present, but too old, we raise. Parameters ---------- name : str The module name. This should be top-level only, so that the version may be checked. extra : str Additional text to include in the ImportError message. raise_on_missing : bool, default True Whether to raise if the optional dependency is not found. When False and the module is not present, None is returned. on_version : str {'raise', 'warn'} What to do when a dependency's version is too old. * raise : Raise an ImportError * warn : Warn that the version is too old. Returns None * ignore: Return the module, even if the version is too old. It's expected that users validate the version locally when using ``on_version="ignore"`` (see. ``io/html.py``) Returns ------- maybe_module : Optional[ModuleType] The imported module, when found and the version is correct. None is returned when the package is not found and `raise_on_missing` is False, or when the package's version is too old and `on_version` is ``'warn'``. """ package_name = INSTALL_MAPPING.get(name) install_name = package_name if package_name is not None else name msg = ( f"Missing optional dependency '{install_name}'. {extra} " f"Use pip or conda to install {install_name}." ) try: module = importlib.import_module(name) except ImportError: if raise_on_missing: raise ImportError(msg) from None else: return None minimum_version = VERSIONS.get(name) if minimum_version: version = get_version(module) if distutils.version.LooseVersion(version) < minimum_version: assert on_version in {"warn", "raise", "ignore"} msg = ( f"Pandas requires version '{minimum_version}' or newer of '{name}' " f"(version '{version}' currently installed)." ) if on_version == "warn": warnings.warn(msg, UserWarning) return None elif on_version == "raise": > raise ImportError(msg) E ImportError: Pandas requires version '0.12.3' or newer of 'xarray' (version '0.0.0' currently installed). /usr/lib/python3.9/site-packages/pandas/compat/_optional.py:126: ImportError ___________________ TestDataset.test_categorical_multiindex ____________________ self = <xarray.tests.test_dataset.TestDataset object at 0x7fcb3ae86670> def test_categorical_multiindex(self): i1 = pd.Series([0, 0]) cat = pd.CategoricalDtype(categories=["foo", "baz", "bar"]) i2 = pd.Series(["baz", "bar"], dtype=cat) df = pd.DataFrame({"i1": i1, "i2": i2, "values": [1, 2]}).set_index( ["i1", "i2"] ) > actual = df.to_xarray() /build/python-xarray/src/xarray-0.17.0/xarray/tests/test_dataset.py:1487: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /usr/lib/python3.9/site-packages/pandas/core/generic.py:3011: in to_xarray xarray = import_optional_dependency("xarray") _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ name = 'xarray', extra = '', raise_on_missing = True, on_version = 'raise' def import_optional_dependency( name: str, extra: str = "", raise_on_missing: bool = True, on_version: str = "raise" ): """ Import an optional dependency. By default, if a dependency is missing an ImportError with a nice message will be raised. If a dependency is present, but too old, we raise. Parameters ---------- name : str The module name. This should be top-level only, so that the version may be checked. extra : str Additional text to include in the ImportError message. raise_on_missing : bool, default True Whether to raise if the optional dependency is not found. When False and the module is not present, None is returned. on_version : str {'raise', 'warn'} What to do when a dependency's version is too old. * raise : Raise an ImportError * warn : Warn that the version is too old. Returns None * ignore: Return the module, even if the version is too old. It's expected that users validate the version locally when using ``on_version="ignore"`` (see. ``io/html.py``) Returns ------- maybe_module : Optional[ModuleType] The imported module, when found and the version is correct. None is returned when the package is not found and `raise_on_missing` is False, or when the package's version is too old and `on_version` is ``'warn'``. """ package_name = INSTALL_MAPPING.get(name) install_name = package_name if package_name is not None else name msg = ( f"Missing optional dependency '{install_name}'. {extra} " f"Use pip or conda to install {install_name}." ) try: module = importlib.import_module(name) except ImportError: if raise_on_missing: raise ImportError(msg) from None else: return None minimum_version = VERSIONS.get(name) if minimum_version: version = get_version(module) if distutils.version.LooseVersion(version) < minimum_version: assert on_version in {"warn", "raise", "ignore"} msg = ( f"Pandas requires version '{minimum_version}' or newer of '{name}' " f"(version '{version}' currently installed)." ) if on_version == "warn": warnings.warn(msg, UserWarning) return None elif on_version == "raise": > raise ImportError(msg) E ImportError: Pandas requires version '0.12.3' or newer of 'xarray' (version '0.0.0' currently installed). /usr/lib/python3.9/site-packages/pandas/compat/_optional.py:126: ImportError _________________ TestDataset.test_from_dataframe_categorical __________________ self = <xarray.tests.test_dataset.TestDataset object at 0x7fcb3ab0b880> def test_from_dataframe_categorical(self): cat = pd.CategoricalDtype( categories=["foo", "bar", "baz", "qux", "quux", "corge"] ) i1 = pd.Series(["foo", "bar", "foo"], dtype=cat) i2 = pd.Series(["bar", "bar", "baz"], dtype=cat) df = pd.DataFrame({"i1": i1, "i2": i2, "values": [1, 2, 3]}) > ds = df.set_index("i1").to_xarray() /build/python-xarray/src/xarray-0.17.0/xarray/tests/test_dataset.py:4131: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /usr/lib/python3.9/site-packages/pandas/core/generic.py:3011: in to_xarray xarray = import_optional_dependency("xarray") _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ name = 'xarray', extra = '', raise_on_missing = True, on_version = 'raise' def import_optional_dependency( name: str, extra: str = "", raise_on_missing: bool = True, on_version: str = "raise" ): """ Import an optional dependency. By default, if a dependency is missing an ImportError with a nice message will be raised. If a dependency is present, but too old, we raise. Parameters ---------- name : str The module name. This should be top-level only, so that the version may be checked. extra : str Additional text to include in the ImportError message. raise_on_missing : bool, default True Whether to raise if the optional dependency is not found. When False and the module is not present, None is returned. on_version : str {'raise', 'warn'} What to do when a dependency's version is too old. * raise : Raise an ImportError * warn : Warn that the version is too old. Returns None * ignore: Return the module, even if the version is too old. It's expected that users validate the version locally when using ``on_version="ignore"`` (see. ``io/html.py``) Returns ------- maybe_module : Optional[ModuleType] The imported module, when found and the version is correct. None is returned when the package is not found and `raise_on_missing` is False, or when the package's version is too old and `on_version` is ``'warn'``. """ package_name = INSTALL_MAPPING.get(name) install_name = package_name if package_name is not None else name msg = ( f"Missing optional dependency '{install_name}'. {extra} " f"Use pip or conda to install {install_name}." ) try: module = importlib.import_module(name) except ImportError: if raise_on_missing: raise ImportError(msg) from None else: return None minimum_version = VERSIONS.get(name) if minimum_version: version = get_version(module) if distutils.version.LooseVersion(version) < minimum_version: assert on_version in {"warn", "raise", "ignore"} msg = ( f"Pandas requires version '{minimum_version}' or newer of '{name}' " f"(version '{version}' currently installed)." ) if on_version == "warn": warnings.warn(msg, UserWarning) return None elif on_version == "raise": > raise ImportError(msg) E ImportError: Pandas requires version '0.12.3' or newer of 'xarray' (version '0.0.0' currently installed). /usr/lib/python3.9/site-packages/pandas/compat/_optional.py:126: ImportError _________________________ test_roundtrip_pandas_series _________________________ @given(numeric_series, st.text()) > def test_roundtrip_pandas_series(ser, ix_name): /build/python-xarray/src/xarray-0.17.0/properties/test_pandas_roundtrip.py:73: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /build/python-xarray/src/xarray-0.17.0/properties/test_pandas_roundtrip.py:79: in test_roundtrip_pandas_series xr.testing.assert_identical(arr, roundtripped.to_xarray()) /usr/lib/python3.9/site-packages/pandas/core/generic.py:3011: in to_xarray xarray = import_optional_dependency("xarray") _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ name = 'xarray', extra = '', raise_on_missing = True, on_version = 'raise' def import_optional_dependency( name: str, extra: str = "", raise_on_missing: bool = True, on_version: str = "raise" ): """ Import an optional dependency. By default, if a dependency is missing an ImportError with a nice message will be raised. If a dependency is present, but too old, we raise. Parameters ---------- name : str The module name. This should be top-level only, so that the version may be checked. extra : str Additional text to include in the ImportError message. raise_on_missing : bool, default True Whether to raise if the optional dependency is not found. When False and the module is not present, None is returned. on_version : str {'raise', 'warn'} What to do when a dependency's version is too old. * raise : Raise an ImportError * warn : Warn that the version is too old. Returns None * ignore: Return the module, even if the version is too old. It's expected that users validate the version locally when using ``on_version="ignore"`` (see. ``io/html.py``) Returns ------- maybe_module : Optional[ModuleType] The imported module, when found and the version is correct. None is returned when the package is not found and `raise_on_missing` is False, or when the package's version is too old and `on_version` is ``'warn'``. """ package_name = INSTALL_MAPPING.get(name) install_name = package_name if package_name is not None else name msg = ( f"Missing optional dependency '{install_name}'. {extra} " f"Use pip or conda to install {install_name}." ) try: module = importlib.import_module(name) except ImportError: if raise_on_missing: raise ImportError(msg) from None else: return None minimum_version = VERSIONS.get(name) if minimum_version: version = get_version(module) if distutils.version.LooseVersion(version) < minimum_version: assert on_version in {"warn", "raise", "ignore"} msg = ( f"Pandas requires version '{minimum_version}' or newer of '{name}' " f"(version '{version}' currently installed)." ) if on_version == "warn": warnings.warn(msg, UserWarning) return None elif on_version == "raise": > raise ImportError(msg) E ImportError: Pandas requires version '0.12.3' or newer of 'xarray' (version '0.0.0' currently installed). /usr/lib/python3.9/site-packages/pandas/compat/_optional.py:126: ImportError ```Environment: Output of <tt>xr.show_versions()</tt>commit: None python: 3.9.2 (default, Feb 20 2021, 18:40:11) [GCC 10.2.0] python-bits: 64 OS: Linux OS-release: 5.11.5-arch1-1 machine: x86_64 processor: byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.12.0 libnetcdf: 4.7.4 xarray: 0.0.0 pandas: 1.2.3 numpy: 1.20.1 scipy: 1.6.1 netCDF4: 1.5.5.1 pydap: None h5netcdf: None h5py: 3.1.0 Nio: None zarr: None cftime: 1.4.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.3.2 dask: 2021.03.0 distributed: 2021.03.0 matplotlib: 3.3.4 cartopy: None seaborn: 0.11.1 numbagg: None pint: 0.16.1 setuptools: 54.1.1 pip: None conda: None pytest: 6.2.2 IPython: None sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5038/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
567058587 | MDU6SXNzdWU1NjcwNTg1ODc= | 3778 | Two strange errors in tests TestVariable using .copy() | ArchangeGabriel 490531 | closed | 0 | 7 | 2020-02-18T17:51:22Z | 2020-02-28T15:16:14Z | 2020-02-28T15:16:14Z | CONTRIBUTOR | Setup is as described in #3777. The two failures are the following ones: ``` ____ TestVariable.test_index_0d_not_a_time _______ self = <xarray.tests.test_units.TestVariable object at 0x7f3926b2ad00>
xarray/tests/test_variable.py:206: self = <xarray.tests.test_units.TestVariable object at 0x7f3926b2ad00> variable = <xarray.Variable (x: 1)> <Quantity(['NaT'], 'meter')> expected_value0 = numpy.datetime64('NaT'), expected_dtype = None
xarray/tests/test_variable.py:151: AssertionError ___ TestVariable.test_equals_all_dtypes ____ self = <xarray.tests.test_units.TestVariable object at 0x7f39282b4e50>
xarray/tests/test_variable.py:386: AssertionError ``` I have no idea what’s wrong here. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3778/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
567062305 | MDU6SXNzdWU1NjcwNjIzMDU= | 3779 | Three test_aggregation[int-method_median] tests failing | ArchangeGabriel 490531 | closed | 0 | 2 | 2020-02-18T17:58:29Z | 2020-02-23T19:34:35Z | 2020-02-23T19:34:35Z | CONTRIBUTOR | Follow-up of #3777. The three failing tests seems to be failing because ``` __ TestVariable.test_aggregation[int-method_median] __ values = array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1]), axis = None, skipna = None kwargs = {}, func = <function _dask_or_eager_func.\<locals>.f at 0x7f3927bdbe50> msg = 'median is not available with skipna=False with the installed version of numpy; upgrade to numpy 1.12 or newer to use skipna=True or skipna=None'
xarray/core/duck_array_ops.py:307: args = (array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1]),), kwargs = {'axis': None} dispatch_args = (array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1]),)
xarray/core/duck_array_ops.py:40: .0 = <tuple_iterator object at 0x7f3927966f70>
xarray/core/duck_array_ops.py:40: AttributeError During handling of the above exception, another exception occurred: self = <xarray.tests.test_units.TestVariable object at 0x7f3927966640> func = method_median, dtype = <class 'int'>
xarray/tests/test_units.py:1389: xarray/tests/test_units.py:374: in call return func(all_args, all_kwargs) xarray/core/common.py:46: in wrapped_func return self.reduce(func, dim, axis, skipna=skipna, kwargs) xarray/core/variable.py:1537: in reduce data = func(input_data, *kwargs) values = array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1]), axis = None, skipna = None kwargs = {}, func = <function _dask_or_eager_func.\<locals>.f at 0x7f3927bdbe50> msg = 'median is not available with skipna=False with the installed version of numpy; upgrade to numpy 1.12 or newer to use skipna=True or skipna=None'
xarray/core/duck_array_ops.py:321: NotImplementedError __ TestDataArray.test_aggregation[int-method_median] ___ values = array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), axis = None, skipna = None kwargs = {}, func = <function _dask_or_eager_func.\<locals>.f at 0x7f39286dbc10> msg = 'median is not available with skipna=False with the installed version of numpy; upgrade to numpy 1.12 or newer to use skipna=True or skipna=None'
xarray/core/duck_array_ops.py:307: args = (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),), kwargs = {'axis': None} dispatch_args = (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),)
xarray/core/duck_array_ops.py:40: .0 = <tuple_iterator object at 0x7f39288ad880>
xarray/core/duck_array_ops.py:40: AttributeError During handling of the above exception, another exception occurred: self = <xarray.tests.test_units.TestDataArray object at 0x7f39288ad190> func = method_median, dtype = <class 'int'>
xarray/tests/test_units.py:2226: xarray/tests/test_units.py:374: in call return func(all_args, all_kwargs) xarray/core/common.py:46: in wrapped_func return self.reduce(func, dim, axis, skipna=skipna, kwargs) xarray/core/dataarray.py:2235: in reduce var = self.variable.reduce(func, dim, axis, keep_attrs, keepdims, kwargs) xarray/core/variable.py:1537: in reduce data = func(input_data, *kwargs) values = array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), axis = None, skipna = None kwargs = {}, func = <function _dask_or_eager_func.\<locals>.f at 0x7f39286dbc10> msg = 'median is not available with skipna=False with the installed version of numpy; upgrade to numpy 1.12 or newer to use skipna=True or skipna=None'
xarray/core/duck_array_ops.py:321: NotImplementedError ___ TestDataset.test_aggregation[int-method_median] ____ values = <Quantity([0 0 0 0 0 0 0 0 0 1], 'pascal')>, axis = 0, skipna = None kwargs = {}, func = <function _dask_or_eager_func.\<locals>.f at 0x7f392619b820> msg = 'median is not available with skipna=False with the installed version of numpy; upgrade to numpy 1.12 or newer to use skipna=True or skipna=None'
xarray/core/duck_array_ops.py:307: args = (<Quantity([0 0 0 0 0 0 0 0 0 1], 'pascal')>,), kwargs = {'axis': 0} dispatch_args = (<Quantity([0 0 0 0 0 0 0 0 0 1], 'pascal')>,)
xarray/core/duck_array_ops.py:40: .0 = <tuple_iterator object at 0x7f39269995e0>
xarray/core/duck_array_ops.py:40: AttributeError During handling of the above exception, another exception occurred: self = <xarray.tests.test_units.TestDataset object at 0x7f3927adf880> func = method_median, dtype = <class 'int'>
xarray/tests/test_units.py:3733: xarray/tests/test_units.py:374: in call return func(all_args, all_kwargs) xarray/core/common.py:83: in wrapped_func return self.reduce( xarray/core/dataset.py:4230: in reduce variables[name] = var.reduce( xarray/core/variable.py:1535: in reduce data = func(input_data, axis=axis, *kwargs) values = <Quantity([0 0 0 0 0 0 0 0 0 1], 'pascal')>, axis = 0, skipna = None kwargs = {}, func = <function _dask_or_eager_func.\<locals>.f at 0x7f392619b820> msg = 'median is not available with skipna=False with the installed version of numpy; upgrade to numpy 1.12 or newer to use skipna=True or skipna=None'
xarray/core/duck_array_ops.py:321: NotImplementedError ``` However I’m not much knowledgeable on all this, so I’ll defer to you for finding the root cause. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3779/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
568320746 | MDU6SXNzdWU1NjgzMjA3NDY= | 3783 | New TestVariable.test_pad failure with pint 0.11 | ArchangeGabriel 490531 | closed | 0 | 1 | 2020-02-20T13:59:35Z | 2020-02-23T19:13:08Z | 2020-02-23T19:13:08Z | CONTRIBUTOR | Since y-day, self = <xarray.tests.test_units.TestVariable object at 0x7f6bfd8c1b20>
xarray/tests/test_variable.py:813: xarray/core/variable.py:1210: in pad_with_fill_value array = np.pad( <array_function internals>:5: in pad ??? /usr/lib/python3.8/site-packages/pint/quantity.py:1543: in array_function return numpy_wrap("function", func, args, kwargs, types) /usr/lib/python3.8/site-packages/pint/numpy_func.py:894: in numpy_wrap return handledname /usr/lib/python3.8/site-packages/pint/numpy_func.py:671: in _pad kwargs["constant_values"] = _recursive_convert(kwargs["constant_values"], units) /usr/lib/python3.8/site-packages/pint/numpy_func.py:659: in _recursive_convert arg = unit._REGISTRY.Quantity(arg, unit) /usr/lib/python3.8/site-packages/pint/quantity.py:200: in new inst._magnitude = _to_magnitude( value = False, force_ndarray = True, force_ndarray_like = False
/usr/lib/python3.8/site-packages/pint/compat.py:49: TypeError ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3783/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
567035590 | MDU6SXNzdWU1NjcwMzU1OTA= | 3777 | test_open_mfdataset_list_attr is ran even when dask is not available | ArchangeGabriel 490531 | closed | 0 | 5 | 2020-02-18T17:08:23Z | 2020-02-19T18:24:43Z | 2020-02-19T18:24:43Z | CONTRIBUTOR | I’m currently packaging xarray (0.15.0) for ArchLinux, and I’m running the test suite with all our currently available packages (in addition to
I was greatly impressed at the automatic selection of tests depending on what is available on the system. :) I’m only seeing 10 tests failures ( Corresponding test output: ``` ___ testopen_mfdataset_list_attr _____
xarray/tests/test_backends.py:2561: xarray/backends/api.py:908: in open_mfdataset datasets = [open_(p, open_kwargs) for p in paths] xarray/backends/api.py:908: in <listcomp> datasets = [open_(p, open_kwargs) for p in paths] xarray/backends/api.py:538: in open_dataset ds = maybe_decode_store(store) store = <xarray.backends.netCDF4_.NetCDF4DataStore object at 0x7f392aebc640> lock = False
xarray/backends/api.py:459: ModuleNotFoundError ``` I think this test should thus not be selected if dask is not installed. ;) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3777/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
567510745 | MDExOlB1bGxSZXF1ZXN0Mzc3MTIxMjM4 | 3780 | Avoid running test_open_mfdataset_list_attr without dask | ArchangeGabriel 490531 | closed | 0 | 6 | 2020-02-19T11:41:25Z | 2020-02-19T18:24:43Z | 2020-02-19T18:24:43Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/3780 | Fixes GH-3777.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3780/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);