home / github

Menu
  • Search all tables
  • GraphQL API

issues

Table actions
  • GraphQL API for issues

3 rows where repo = 13221727 and user = 33153877 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: locked, created_at (date), updated_at (date), closed_at (date)

state 2

  • open 2
  • closed 1

type 1

  • issue 3

repo 1

  • xarray · 3 ✖
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
1668898601 I_kwDOAMm_X85jeV8p 7758 Provide a way to specify how long open_dataset tries to fetch data before timing out huaracheguarache 33153877 open 0     6 2023-04-14T20:13:52Z 2023-04-26T15:31:06Z   NONE      

Is your feature request related to a problem?

I encountered an issue with the open_dataset function in my code when the server I fetch data from experienced a network issue. The whole script froze because open_dataset was unable to fetch the data from the server.

Describe the solution you'd like

An argument that allows you to specify how long open_dataset tries to fetch the data before timing out.

Describe alternatives you've considered

Right now I'm considering trying to send a HEAD request to the server and checking the response with a try-except block to catch a bad status code. I'm not sure how robust this alternative is, and I would prefer if there would be a way to natively specify a timeout in open_dataset.

Additional context

No response

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/7758/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue
1572434353 I_kwDOAMm_X85duXGx 7504 Selecting dates with .sel() doesn't work when time index is in cftime huaracheguarache 33153877 open 0     2 2023-02-06T11:56:07Z 2023-02-06T18:27:15Z   NONE      

What happened?

When I try to select a subset of the data in a dataset/array with a list containing dates it fails when the time index is in cftime, and I get the following error message:

KeyError: "not all values found in index 'time'"

What did you expect to happen?

I expect selecting a set of dates with a list to work the same way as when the time index is in datetime64.

Minimal Complete Verifiable Example

```Python import xarray as xr import numpy as np

ds = xr.open_dataset("https://thredds.met.no/thredds/dodsC/osisaf/met.no/ice/index/v2p1/nh/osisaf_nh_sie_daily.nc")

Time coordinates are in datetime64, and selecting dates with a list works.

print(ds.time) print(ds.sel(time=["2023-01-01", "2023-01-02"]))

Converting the calendar to all_leap changes the time coordinates to use cftime instead of datetime64.

ds = ds.convert_calendar("all_leap", missing=np.nan).interpolate_na()

Time coordinates are in cftime, and selecting dates with a list fails.

print(ds.time) print(ds.sel(time=["2023-01-01", "2023-01-02"])) ```

MVCE confirmation

  • [X] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
  • [X] Complete example — the example is self-contained, including all data and the text of any traceback.
  • [X] Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
  • [X] New issue — a search of GitHub Issues suggests this is not a duplicate.

Relevant log output

Python (geoscience) [michael@localhost ~]$ python minimal.py <xarray.DataArray 'time' (time: 16107)> array(['1979-01-01T00:00:00.000000000', '1979-01-02T00:00:00.000000000', '1979-01-03T00:00:00.000000000', ..., '2023-02-03T00:00:00.000000000', '2023-02-04T00:00:00.000000000', '2023-02-05T00:00:00.000000000'], dtype='datetime64[ns]') Coordinates: * time (time) datetime64[ns] 1979-01-01 1979-01-02 ... 2023-02-05 sic_threshold float32 ... lat float32 ... lon float32 ... Attributes: standard_name: time long_name: time of the observation (centered) coverage_content_type: auxiliaryInformation axis: T <xarray.Dataset> Dimensions: (time: 2, nv: 2) Coordinates: * time (time) datetime64[ns] 2023-01-01 2023-01-02 sic_threshold float32 ... lat float32 ... lon float32 ... Dimensions without coordinates: nv Data variables: lat_bounds (nv) float32 ... lon_bounds (nv) float32 ... area |S64 ... sie (time) float64 ... source (time) float64 ... Attributes: (12/35) title: Daily Northern Hemisphere Sea Ice Extent from EU... product_id: OSI-420 product_name: OSI SAF Sea Ice Index product_status: demonstration version: v2p1 summary: Time series of Daily Sea Ice Extent (SIE) for No... ... ... distribution_statement: Free copyright_statement: Copyright 2023 EUMETSAT references: Product User Manual for OSI-420, Lavergne et al.... featureType: timeSeries DODS.strlen: 2 DODS.dimName: nchar <xarray.DataArray 'time' (time: 16140)> array([cftime.DatetimeAllLeap(1979, 1, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeAllLeap(1979, 1, 2, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeAllLeap(1979, 1, 3, 0, 0, 0, 0, has_year_zero=True), ..., cftime.DatetimeAllLeap(2023, 2, 3, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeAllLeap(2023, 2, 4, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeAllLeap(2023, 2, 5, 0, 0, 0, 0, has_year_zero=True)], dtype=object) Coordinates: * time (time) object 1979-01-01 00:00:00 ... 2023-02-05 00:00:00 lat float32 90.0 lon float32 0.0 sic_threshold float32 0.15 Attributes: standard_name: time long_name: time of the observation (centered) coverage_content_type: auxiliaryInformation axis: T Traceback (most recent call last): File "/var/home/michael/minimal.py", line 15, in <module> print(ds.sel(time=["2023-01-01", "2023-01-02"])) File "/var/home/michael/mambaforge/envs/geoscience/lib/python3.10/site-packages/xarray/core/dataset.py", line 2554, in sel query_results = map_index_queries( File "/var/home/michael/mambaforge/envs/geoscience/lib/python3.10/site-packages/xarray/core/indexing.py", line 183, in map_index_queries results.append(index.sel(labels, **options)) # type: ignore[call-arg] File "/var/home/michael/mambaforge/envs/geoscience/lib/python3.10/site-packages/xarray/core/indexes.py", line 480, in sel raise KeyError(f"not all values found in index {coord_name!r}") KeyError: "not all values found in index 'time'"

Anything else we need to know?

No response

Environment

/var/home/michael/mambaforge/envs/geoscience/lib/python3.10/site-packages/_distutils_hack/__init__.py:33: UserWarning: Setuptools is replacing distutils. warnings.warn("Setuptools is replacing distutils.") INSTALLED VERSIONS ------------------ commit: None python: 3.10.9 | packaged by conda-forge | (main, Feb 2 2023, 20:20:04) [GCC 11.3.0] python-bits: 64 OS: Linux OS-release: 6.1.9-200.fc37.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: ('en_GB', 'UTF-8') libhdf5: 1.12.2 libnetcdf: 4.8.1 xarray: 2022.11.0 pandas: 1.5.1 numpy: 1.23.4 scipy: 1.9.3 netCDF4: 1.6.1 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.6.2 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.3.6 dask: None distributed: None matplotlib: 3.6.2 cartopy: 0.21.0 seaborn: 0.12.1 numbagg: None fsspec: None cupy: None pint: None sparse: None flox: None numpy_groupies: None setuptools: 65.5.1 pip: 22.3.1 conda: None pytest: None IPython: 8.6.0 sphinx: None
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/7504/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue
1052918815 I_kwDOAMm_X84-wkQf 5987 Plotting interpolated data causes artefacts huaracheguarache 33153877 closed 1     8 2021-11-14T11:50:13Z 2021-11-19T22:35:09Z 2021-11-19T22:35:09Z NONE      

What happened:

I'm trying to do some analysis of CMIP6 model data, and I want to plot multi-model ensembles. In order to do that I need to regrid all of the models to a common grid. Whenever I try to plot data from a regridded model there's a white line along the central longitude and the poles. I use the PlateCarree projection and it doesn't matter what I choose as the central longitude; there's always a white line there.

The code I've included below produces 4 plots. The first one is of data that hasn't been interpolated and there's no white line:

The next three are with interpolated data and with different central longitudes. They all have a white line at the central longitude.

central_longitude=0

central_longitude=33

central_longitude=164

What you expected to happen:

No plot artefacts.

Minimal Complete Verifiable Example:

```python import xarray as xr import matplotlib.pyplot as plt import cartopy.crs as ccrs

cesm2_waccm = xr.open_dataset('pr_day_CESM2-WACCM_ssp245_r2i1p1f1_gn_20750101-20841231.nc') mpi = xr.open_dataset('pr_day_MPI-ESM1-2-LR_ssp245_r1i1p1f1_gn_20750101-20941231.nc')

cesm2_waccm_subset = cesm2_waccm.sel(time=slice('2075-01-01', '2075-12-31')).mean(dim='time') mpi_subset = mpi.sel(time=slice('2075-01-01', '2075-12-31')).mean(dim='time')

map_proj = ccrs.PlateCarree()

This works.

plot = mpi_subset.pr.plot(subplot_kws={'projection': map_proj}) plot.axes.coastlines() plt.show()

mpi_interp = mpi_subset.interp(lat=cesm2_waccm_subset['lat'], lon=cesm2_waccm_subset['lon'])

A randomly chosen set of central longitudes for plots.

longitudes = [0, 33, 164]

for lon in longitudes: map_proj = ccrs.PlateCarree(central_longitude=lon)

# Has a white line at the central longitude. plot = mpi_interp.pr.plot(subplot_kws={'projection': map_proj}) plot.axes.coastlines() plt.show()

```

Anything else we need to know?:

Here's the data I used for plotting:

https://climate.uiogeo-apps.sigma2.no/ESGF/CMIP6/ScenarioMIP/NCAR/CESM2-WACCM/ssp245/r2i1p1f1/day/pr/gn/v20200224/pr_day_CESM2-WACCM_ssp245_r2i1p1f1_gn_20750101-20841231.nc

https://climate.uiogeo-apps.sigma2.no/ESGF/CMIP6/ScenarioMIP/MPI-M/MPI-ESM1-2-LR/ssp245/r1i1p1f1/day/pr/gn/v20190710/pr_day_MPI-ESM1-2-LR_ssp245_r1i1p1f1_gn_20750101-20941231.nc

Environment:

Output of <tt>xr.show_versions()</tt> ``` In [3]: xr.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.9.7 | packaged by conda-forge | (default, Sep 29 2021, 19:23:11) [GCC 9.4.0] python-bits: 64 OS: Linux OS-release: 5.14.16-301.fc35.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: ('en_GB', 'UTF-8') libhdf5: 1.12.1 libnetcdf: None xarray: 0.20.1 pandas: 1.3.4 numpy: 1.21.4 scipy: 1.7.2 netCDF4: None pydap: None h5netcdf: 0.11.0 h5py: 3.4.0 Nio: None zarr: None cftime: 1.5.1.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: None distributed: None matplotlib: 3.3.2 cartopy: 0.20.1 seaborn: None numbagg: None fsspec: None cupy: None pint: None sparse: None setuptools: 58.5.3 pip: 21.3.1 conda: None pytest: None IPython: 7.29.0 sphinx: None ```
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5987/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 800.574ms · About: xarray-datasette