home / github

Menu
  • Search all tables
  • GraphQL API

issues

Table actions
  • GraphQL API for issues

34 rows where repo = 13221727, "updated_at" is on date 2022-08-12 and user = 14371165 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: comments, draft, created_at (date), updated_at (date), closed_at (date)

type 1

  • pull 34

state 1

  • closed 34

repo 1

  • xarray · 34 ✖
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
1128356864 PR_kwDOAMm_X84ySpaM 6257 Run pyupgrade on core/weighted Illviljan 14371165 closed 0     2 2022-02-09T10:38:06Z 2022-08-12T09:08:47Z 2022-02-09T12:52:39Z MEMBER   0 pydata/xarray/pulls/6257

Clean up a little in preparation for #6059.

  • [ ] Closes #xxxx
  • [ ] Tests added
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [ ] New functions/methods are listed in api.rst

xref: #6244

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6257/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1124884287 PR_kwDOAMm_X84yHhLI 6240 Run pyupgrade on core/utils Illviljan 14371165 closed 0     6 2022-02-05T09:39:48Z 2022-08-12T09:08:36Z 2022-02-05T21:29:37Z MEMBER   0 pydata/xarray/pulls/6240

Make #6239 cleaner by running pyupgrade separately.

pyupgrade fixes typing only if from __future__ import annotations has been manually added to the file. Could probably do this in other files as well.

xref: #6244

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6240/reactions",
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1124879701 PR_kwDOAMm_X84yHgUf 6239 Type NDArrayMixin Illviljan 14371165 closed 0     5 2022-02-05T09:15:34Z 2022-08-12T09:08:32Z 2022-08-12T09:08:32Z MEMBER   1 pydata/xarray/pulls/6239

Activate typing on these mixins by removing the Any.

  • [ ] Closes #xxxx
  • [ ] Tests added
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [ ] New functions/methods are listed in api.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6239/reactions",
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1052952145 PR_kwDOAMm_X84uf1L8 5988 Check for py version instead of try/except when importing entry_points Illviljan 14371165 closed 0     1 2021-11-14T14:23:18Z 2022-08-12T09:08:25Z 2021-11-14T20:16:57Z MEMBER   0 pydata/xarray/pulls/5988

This removes the need for the # type: ignore to make mypy happy. It is also clearer when this compatibillity code can be removed.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5988/reactions",
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1052888529 PR_kwDOAMm_X84ufplh 5986 Use set_options for asv bottleneck tests Illviljan 14371165 closed 0     2 2021-11-14T09:10:38Z 2022-08-12T09:07:55Z 2021-11-15T20:40:38Z MEMBER   0 pydata/xarray/pulls/5986

Inspired by #5734, remove the non-bottleneck build and instead use xr.set_options on the relevant tests. This makes the report much more readable and reduces testing time quite a bit since everything isn't accelerated by bottleneck.

  • [x] Passes pre-commit run --all-files
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5986/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
957439114 MDExOlB1bGxSZXF1ZXN0NzAwODY1NDE3 5662 Limit and format number of displayed dimensions in repr Illviljan 14371165 closed 0     11 2021-08-01T09:12:24Z 2022-08-12T09:07:49Z 2022-01-03T17:38:49Z MEMBER   0 pydata/xarray/pulls/5662

When there's a lot of dims, create a new line and continue printing. If there's even more dims that even a few rows can't display them all then limit the number of dims displayed in similar fashion to coordinates.

Questions: * Where should this be used? Datasets, dataarrays, dimensions without coords? * Should dim_summary_limited be a straight replacement for dim_summary? I'm not super familiar with all the places it is used so I'm unsure. * Should we print the number of dims shown and the total number of dims? If yes, then we need to rethink how the dimensions are displayed, as it's not possible with the current style. See the example with short names.

  • [x] Closes #5546
  • [x] Tests added
  • [x] Passes pre-commit run --all-files
  • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst

Test case: ```python import numpy as np import xarray as xr

A few dims with long names:

a = np.arange(0, 24) data_vars = dict() for i in a: data_vars[f"long_variable_name_{i}"] = xr.DataArray( name=f"long_variable_name_{i}", data=np.arange(0, 20), dims=[f"long_coord_name_{i}x"], coords={f"long_coord_name{i}x": np.arange(0, 20) * 2}, ) ds0 = xr.Dataset(data_vars) ds0.attrs = {f"attr{k}": 2 for k in a}

print(ds0) <xarray.Dataset> Dimensions: (long_coord_name_0_x: 20, long_coord_name_10_x: 20, long_coord_name_11_x: 20, long_coord_name_12_x: 20, long_coord_name_13_x: 20, long_coord_name_14_x: 20, long_coord_name_15_x: 20, long_coord_name_16_x: 20, long_coord_name_17_x: 20, long_coord_name_18_x: 20, long_coord_name_19_x: 20, long_coord_name_1_x: 20, long_coord_name_20_x: 20, long_coord_name_21_x: 20, long_coord_name_22_x: 20, long_coord_name_23_x: 20, long_coord_name_2_x: 20, long_coord_name_3_x: 20, long_coord_name_4_x: 20, long_coord_name_5_x: 20, long_coord_name_6_x: 20, long_coord_name_7_x: 20, long_coord_name_8_x: 20, long_coord_name_9_x: 20) Coordinates: (12/24) * long_coord_name_0_x (long_coord_name_0_x) int32 0 2 4 6 8 ... 32 34 36 38 * long_coord_name_1_x (long_coord_name_1_x) int32 0 2 4 6 8 ... 32 34 36 38 * long_coord_name_2_x (long_coord_name_2_x) int32 0 2 4 6 8 ... 32 34 36 38 * long_coord_name_3_x (long_coord_name_3_x) int32 0 2 4 6 8 ... 32 34 36 38 * long_coord_name_4_x (long_coord_name_4_x) int32 0 2 4 6 8 ... 32 34 36 38 * long_coord_name_5_x (long_coord_name_5_x) int32 0 2 4 6 8 ... 32 34 36 38 ... * long_coord_name_18_x (long_coord_name_18_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_19_x (long_coord_name_19_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_20_x (long_coord_name_20_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_21_x (long_coord_name_21_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_22_x (long_coord_name_22_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_23_x (long_coord_name_23_x) int32 0 2 4 6 ... 32 34 36 38 Data variables: (12/24) long_variable_name_0 (long_coord_name_0_x) int32 0 1 2 3 4 ... 16 17 18 19 long_variable_name_1 (long_coord_name_1_x) int32 0 1 2 3 4 ... 16 17 18 19 long_variable_name_2 (long_coord_name_2_x) int32 0 1 2 3 4 ... 16 17 18 19 long_variable_name_3 (long_coord_name_3_x) int32 0 1 2 3 4 ... 16 17 18 19 long_variable_name_4 (long_coord_name_4_x) int32 0 1 2 3 4 ... 16 17 18 19 long_variable_name_5 (long_coord_name_5_x) int32 0 1 2 3 4 ... 16 17 18 19 ... long_variable_name_18 (long_coord_name_18_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_19 (long_coord_name_19_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_20 (long_coord_name_20_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_21 (long_coord_name_21_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_22 (long_coord_name_22_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_23 (long_coord_name_23_x) int32 0 1 2 3 ... 16 17 18 19 Attributes: (12/24) attr_0: 2 attr_1: 2 attr_2: 2 attr_3: 2 attr_4: 2 attr_5: 2 ... attr_18: 2 attr_19: 2 attr_20: 2 attr_21: 2 attr_22: 2 attr_23: 2 ```

```python

Many dims with long names:

a = np.arange(0, 200) data_vars = dict() for i in a: data_vars[f"long_variable_name_{i}"] = xr.DataArray( name=f"long_variable_name_{i}", data=np.arange(0, 20), dims=[f"long_coord_name_{i}x"], coords={f"long_coord_name{i}x": np.arange(0, 20) * 2}, ) ds1 = xr.Dataset(data_vars) ds1.attrs = {f"attr{k}": 2 for k in a}

print(ds1) <xarray.Dataset> Dimensions: (long_coord_name_0_x: 20, long_coord_name_100_x: 20, long_coord_name_101_x: 20, long_coord_name_102_x: 20, long_coord_name_103_x: 20, long_coord_name_104_x: 20, ... long_coord_name_94_x: 20, long_coord_name_95_x: 20, long_coord_name_96_x: 20, long_coord_name_97_x: 20, long_coord_name_98_x: 20, long_coord_name_99_x: 20, long_coord_name_9_x: 20) Coordinates: (12/200) * long_coord_name_0_x (long_coord_name_0_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_1_x (long_coord_name_1_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_2_x (long_coord_name_2_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_3_x (long_coord_name_3_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_4_x (long_coord_name_4_x) int32 0 2 4 6 ... 32 34 36 38 * long_coord_name_5_x (long_coord_name_5_x) int32 0 2 4 6 ... 32 34 36 38 ... * long_coord_name_194_x (long_coord_name_194_x) int32 0 2 4 6 ... 34 36 38 * long_coord_name_195_x (long_coord_name_195_x) int32 0 2 4 6 ... 34 36 38 * long_coord_name_196_x (long_coord_name_196_x) int32 0 2 4 6 ... 34 36 38 * long_coord_name_197_x (long_coord_name_197_x) int32 0 2 4 6 ... 34 36 38 * long_coord_name_198_x (long_coord_name_198_x) int32 0 2 4 6 ... 34 36 38 * long_coord_name_199_x (long_coord_name_199_x) int32 0 2 4 6 ... 34 36 38 Data variables: (12/200) long_variable_name_0 (long_coord_name_0_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_1 (long_coord_name_1_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_2 (long_coord_name_2_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_3 (long_coord_name_3_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_4 (long_coord_name_4_x) int32 0 1 2 3 ... 16 17 18 19 long_variable_name_5 (long_coord_name_5_x) int32 0 1 2 3 ... 16 17 18 19 ... long_variable_name_194 (long_coord_name_194_x) int32 0 1 2 3 ... 17 18 19 long_variable_name_195 (long_coord_name_195_x) int32 0 1 2 3 ... 17 18 19 long_variable_name_196 (long_coord_name_196_x) int32 0 1 2 3 ... 17 18 19 long_variable_name_197 (long_coord_name_197_x) int32 0 1 2 3 ... 17 18 19 long_variable_name_198 (long_coord_name_198_x) int32 0 1 2 3 ... 17 18 19 long_variable_name_199 (long_coord_name_199_x) int32 0 1 2 3 ... 17 18 19 Attributes: (12/200) attr_0: 2 attr_1: 2 attr_2: 2 attr_3: 2 attr_4: 2 attr_5: 2 ... attr_194: 2 attr_195: 2 attr_196: 2 attr_197: 2 attr_198: 2 attr_199: 2 ```

```python

Many dims with short names:

data_vars = dict() for i in a: data_vars[f"n_{i}"] = xr.DataArray( name=f"n_{i}", data=np.arange(0, 20), dims=[f"{i}x"], coords={f"{i}_x": np.arange(0, 20) * 2}, ) ds2 = xr.Dataset(data_vars) ds2.attrs = {f"attr{k}": 2 for k in a}

print(ds2) <xarray.Dataset> Dimensions: (0_x: 20, 100_x: 20, 101_x: 20, 102_x: 20, 103_x: 20, 104_x: 20, 105_x: 20, 106_x: 20, 107_x: 20, 108_x: 20, 109_x: 20, 10_x: 20, 110_x: 20, 111_x: 20, 112_x: 20, 113_x: 20, 114_x: 20, 115_x: 20, 116_x: 20, 117_x: 20, 118_x: 20, 119_x: 20, 11_x: 20, 120_x: 20, 121_x: 20, 122_x: 20, 123_x: 20, 124_x: 20, 125_x: 20, 126_x: 20, 127_x: 20, 128_x: 20, 129_x: 20, 12_x: 20, 130_x: 20, 131_x: 20, ... 71_x: 20, 72_x: 20, 73_x: 20, 74_x: 20, 75_x: 20, 76_x: 20, 77_x: 20, 78_x: 20, 79_x: 20, 7_x: 20, 80_x: 20, 81_x: 20, 82_x: 20, 83_x: 20, 84_x: 20, 85_x: 20, 86_x: 20, 87_x: 20, 88_x: 20, 89_x: 20, 8_x: 20, 90_x: 20, 91_x: 20, 92_x: 20, 93_x: 20, 94_x: 20, 95_x: 20, 96_x: 20, 97_x: 20, 98_x: 20, 99_x: 20, 9_x: 20) Coordinates: (12/200) * 0_x (0_x) int32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 * 1_x (1_x) int32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 * 2_x (2_x) int32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 * 3_x (3_x) int32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 * 4_x (4_x) int32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 * 5_x (5_x) int32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 ... * 194_x (194_x) int32 0 2 4 6 8 10 12 14 16 ... 22 24 26 28 30 32 34 36 38 * 195_x (195_x) int32 0 2 4 6 8 10 12 14 16 ... 22 24 26 28 30 32 34 36 38 * 196_x (196_x) int32 0 2 4 6 8 10 12 14 16 ... 22 24 26 28 30 32 34 36 38 * 197_x (197_x) int32 0 2 4 6 8 10 12 14 16 ... 22 24 26 28 30 32 34 36 38 * 198_x (198_x) int32 0 2 4 6 8 10 12 14 16 ... 22 24 26 28 30 32 34 36 38 * 199_x (199_x) int32 0 2 4 6 8 10 12 14 16 ... 22 24 26 28 30 32 34 36 38 Data variables: (12/200) n_0 (0_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_1 (1_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_2 (2_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_3 (3_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_4 (4_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_5 (5_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... n_194 (194_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_195 (195_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_196 (196_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_197 (197_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_198 (198_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n_199 (199_x) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Attributes: (12/200) attr_0: 2 attr_1: 2 attr_2: 2 attr_3: 2 attr_4: 2 attr_5: 2 ... attr_194: 2 attr_195: 2 attr_196: 2 attr_197: 2 attr_198: 2 attr_199: 2 ```

```python

DataArray with many dimensions:

dims = {f"dim_{v}": 2 for v in np.arange(12)} a = xr.DataArray( name="LongDataArrayName", data=np.random.randn(*dims.values()), dims=dims.keys(), coords={k: np.arange(v) * (i + 1) for i, (k, v) in enumerate(dims.items())}, ) print(a) <xarray.DataArray 'LongDataArrayName' (dim_0: 2, dim_1: 2, dim_2: 2, dim_3: 2, dim_4: 2, dim_5: 2, dim_6: 2, dim_7: 2, dim_8: 2, dim_9: 2, dim_10: 2, dim_11: 2)> array([[[[[[[[[[[[ 8.28296160e-01, 2.08993090e-01], [ 8.70468836e-01, 8.90423004e-01]],

            [[ 7.34784427e-01,  2.05408058e-01],
             [-8.57071909e-02,  8.44265228e-01]]],


           [[[-9.35953498e-01, -1.28911601e+00],
             [ 1.10041466e+00,  6.65778297e-02]],

            [[-1.20951652e+00,  6.75763964e-01],
             [-4.71836513e-02,  9.06088516e-01]]]],



          [[[[ 1.59629635e+00,  7.32189004e-01],
             [-3.93944434e-01,  2.46067012e+00]],

            [[ 1.20534658e-01, -1.10855175e+00],
             [ 1.75768289e+00,  1.82771876e+00]]],

... [[[ 1.24664897e+00, 1.72548620e+00], [-7.64230130e-02, -7.96243220e-01]],

            [[-7.02358327e-01,  2.20921513e+00],
             [-7.45919399e-01,  8.16166442e-01]]]],



          [[[[-1.06278662e+00, -3.01061594e-01],
             [-2.68674730e-01,  7.61941899e-01]],

            [[-7.40916926e-01,  1.85122750e+00],
             [-5.42460065e-02, -7.57741769e-01]]],


           [[[-4.12356234e-02,  7.41777992e-01],
             [-1.36243505e+00, -1.25845181e+00]],

            [[-7.42535368e-01,  1.13262286e-01],
             [ 1.03699306e+00, -8.51127899e-01]]]]]]]]]]]])

Coordinates: * dim_0 (dim_0) int32 0 1 * dim_1 (dim_1) int32 0 2 * dim_2 (dim_2) int32 0 3 * dim_3 (dim_3) int32 0 4 * dim_4 (dim_4) int32 0 5 * dim_5 (dim_5) int32 0 6 * dim_6 (dim_6) int32 0 7 * dim_7 (dim_7) int32 0 8 * dim_8 (dim_8) int32 0 9 * dim_9 (dim_9) int32 0 10 * dim_10 (dim_10) int32 0 11 * dim_11 (dim_11) int32 0 12 ```

```python

DataArray with many dimensions but no coords:

dims = {f"dim_{v}": 2 for v in np.arange(12)} a = xr.DataArray( name="LongDataArrayName", data=np.random.randn(*dims.values()), dims=dims.keys(), ) print(a) <xarray.DataArray 'LongDataArrayName' (dim_0: 2, dim_1: 2, dim_2: 2, dim_3: 2, dim_4: 2, dim_5: 2, dim_6: 2, dim_7: 2, dim_8: 2, dim_9: 2, dim_10: 2, dim_11: 2)> array([[[[[[[[[[[[ 2.53218063e-02, -2.01034380e+00], [ 3.07624042e-01, 1.82085569e-01]],

            [[ 1.23998647e+00,  2.80961964e-01],
             [ 5.22623248e-01, -2.10621456e-01]]],


           [[[ 1.55794218e+00, -1.32803310e+00],
             [-7.41474289e-01, -3.35995545e-01]],

            [[ 9.96489723e-03, -1.84197059e-01],
             [-1.24173835e+00,  4.94205388e-01]]]],



          [[[[-2.11962358e-01,  1.18012909e+00],
             [-4.62991218e-01, -9.49171994e-01]],

            [[ 3.90534280e-01, -2.63453002e+00],
             [ 3.57944636e-01,  2.16335768e-01]]],

... [[[-1.11275429e+00, -9.33574221e-01], [ 8.62574702e-01, 1.14185983e+00]],

            [[ 1.36795402e+00,  1.14331852e+00],
             [ 5.96785305e-01,  1.47307855e+00]]]],



          [[[[ 1.95270558e+00, -7.76150298e-01],
             [ 2.05301468e+00, -1.15633640e+00]],

            [[-9.45507288e-01,  1.21096830e+00],
             [ 1.59340121e+00, -3.60261023e-01]]],


           [[[ 2.25343528e+00, -2.84332626e-01],
             [ 1.86644712e-01, -2.78371182e-01]],

            [[-8.86245009e-01, -4.00356195e-01],
             [-2.44036388e-01, -1.53543170e+00]]]]]]]]]]]])

Dimensions without coordinates: dim_0, dim_1, dim_2, dim_3, dim_4, dim_5, dim_6, dim_7, dim_8, dim_9, dim_10, dim_11 ```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5662/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
957432870 MDExOlB1bGxSZXF1ZXN0NzAwODYwMzY4 5661 Speed up _mapping_repr Illviljan 14371165 closed 0     8 2021-08-01T08:44:17Z 2022-08-12T09:07:44Z 2021-08-02T19:45:16Z MEMBER   0 pydata/xarray/pulls/5661

Creating a ordered list for filtering purposes using .items() turns out being rather slow. Use .keys() instead as that doesn't trigger a bunch of dataarray initializations.

  • [x] Passes pre-commit run --all-files

Test case:

```python import numpy as np import xarray as xr

a = np.arange(0, 2000) data_vars = dict() for i in a: data_vars[f"long_variable_name_{i}"] = xr.DataArray( name=f"long_variable_name_{i}", data=np.arange(0, 20), dims=[f"long_coord_name_{i}x"], coords={f"long_coord_name{i}x": np.arange(0, 20) * 2}, ) ds0 = xr.Dataset(data_vars) ds0.attrs = {f"attr{k}": 2 for k in a} ```

Before: python %timeit print(ds0) 14.6 s ± 215 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

After: python %timeit print(ds0) 120 ms ± 2.06 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5661/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
970234731 MDExOlB1bGxSZXF1ZXN0NzEyMjE0ODU4 5703 Use the same bool validator as other inputs for use_bottleneck in xr.set_options Illviljan 14371165 closed 0     2 2021-08-13T09:36:03Z 2022-08-12T09:07:28Z 2021-08-13T13:41:42Z MEMBER   0 pydata/xarray/pulls/5703

Minor change to align with other booleans.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5703/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1299275985 PR_kwDOAMm_X847HxFX 6764 Remove generic utils import Illviljan 14371165 closed 0     0 2022-07-08T17:22:26Z 2022-08-12T09:07:23Z 2022-07-08T17:52:50Z MEMBER   0 pydata/xarray/pulls/6764

Some minor import oddities I noticed while reading the code.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6764/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1299306810 PR_kwDOAMm_X847H3r8 6765 Use `math` instead of `numpy` in some places Illviljan 14371165 closed 0     0 2022-07-08T18:02:33Z 2022-08-12T09:07:12Z 2022-07-09T07:51:15Z MEMBER   0 pydata/xarray/pulls/6765

Use math instead of numpy where possible, looks better and seems faster as well. Idea from https://github.com/pydata/xarray/pull/6702#discussion_r903986442, https://github.com/dask/dask/pull/9232

Example: ```python %timeit math.prod((1, 2, 3)) 161 ns ± 10.5 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

%timeit int(np.prod((1, 2, 3))) 11.9 µs ± 248 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) ```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6765/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1098439498 PR_kwDOAMm_X84wwv5V 6150 Faster dask unstack Illviljan 14371165 closed 0     2 2022-01-10T22:10:45Z 2022-08-12T09:07:07Z 2022-08-12T09:07:06Z MEMBER   1 pydata/xarray/pulls/6150

ref #5582

  • [ ] Closes #xxxx
  • [ ] Tests added
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [ ] New functions/methods are listed in api.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6150/reactions",
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1099631638 PR_kwDOAMm_X84w0pGe 6159 Import Literal from typing instead of typing_extensions Illviljan 14371165 closed 0     1 2022-01-11T21:26:59Z 2022-08-12T09:06:58Z 2022-01-11T21:59:16Z MEMBER   0 pydata/xarray/pulls/6159

Small edit to #6121.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6159/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1299416254 PR_kwDOAMm_X847IPRb 6767 Type `shape` methods Illviljan 14371165 closed 0     0 2022-07-08T20:23:59Z 2022-08-12T09:06:53Z 2022-07-09T07:51:28Z MEMBER   0 pydata/xarray/pulls/6767

The shape methods can have multiple integers inside the tuple, this fixes that and adds to typing to all shape methods I found.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6767/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
996352280 PR_kwDOAMm_X84rv1Fo 5794 Single matplotlib import Illviljan 14371165 closed 0     7 2021-09-14T19:15:12Z 2022-08-12T09:06:30Z 2021-10-24T09:54:28Z MEMBER   0 pydata/xarray/pulls/5794

Reduce number of imports inside functions. I think it helps making the code easier to read as well, as now you know that plt is always available.

  • [x] Tests added
  • [x] Passes pre-commit run --all-files
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst

Seems to not be a major difference in initial imports from (my small sample of) repeated tests:

This branch: ```python %timeit -n1 -r1 import xarray

3.81 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.83 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.87 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.7 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.77 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.91 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.8 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)

np.mean([3.81, 3.83, 3.87, 3.7, 3.77, 3.91, 3.8]) Out[3]: 3.812857142857143 ```

Main: ```python %timeit -n1 -r1 import xarray

3.93 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.69 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.64 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.76 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.79 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.81 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) 3.68 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)

np.mean([3.93, 3.69, 3.64, 3.76, 3.79, 3.81, 3.68]) Out[4]: 3.7571428571428567 ```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5794/reactions",
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
970208539 MDExOlB1bGxSZXF1ZXN0NzEyMTkxODEx 5702 Move docstring for xr.set_options to numpy style Illviljan 14371165 closed 0     2 2021-08-13T09:05:56Z 2022-08-12T09:06:23Z 2021-08-19T22:27:39Z MEMBER   0 pydata/xarray/pulls/5702

While trying to figure out which types are allowed in #5678 I felt that the set_options docstring was rather hard to read. Moving it to typical numpy docstring style helped at least for me.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5702/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1110829504 PR_kwDOAMm_X84xZwqu 6184 Add seed kwarg to the tutorial scatter dataset Illviljan 14371165 closed 0     2 2022-01-21T19:38:53Z 2022-08-12T09:06:13Z 2022-01-26T19:04:02Z MEMBER   0 pydata/xarray/pulls/6184

Allow controlling the randomness of the dataset. It's difficult to catch issues with the dataset if it always changes each run.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6184/reactions",
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1171424128 PR_kwDOAMm_X840jZCq 6371 Remove test_rasterio_vrt_network Illviljan 14371165 closed 0     1 2022-03-16T18:49:29Z 2022-08-12T09:06:02Z 2022-03-17T06:25:22Z MEMBER   0 pydata/xarray/pulls/6371

This test has been failing with a 404 error for a while. Remove the test because a lot of the functionality is implemented in rioxarray.

  • [x] Closes #6363
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6371/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1034329171 PR_kwDOAMm_X84tlgQ1 5892 Drop support for python 3.7 Illviljan 14371165 closed 0     14 2021-10-24T05:32:10Z 2022-08-12T09:05:56Z 2022-01-11T21:22:46Z MEMBER   0 pydata/xarray/pulls/5892

This PR drops support for python 3.7 and removes a bit of compatibility code related to typing.

  • [x] Closes #6138
  • [x] Requires #5845
  • [x] Passes pre-commit run --all-files
  • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [x] Can be merged once we plan to make a release after 2021-12-26. https://numpy.org/neps/nep-0029-deprecation_policy.html
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5892/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1035496539 PR_kwDOAMm_X84tpNcv 5896 Use importlib.resources to load files Illviljan 14371165 closed 0     3 2021-10-25T19:32:30Z 2022-08-12T09:05:51Z 2021-10-25T21:18:18Z MEMBER   1 pydata/xarray/pulls/5896

Following: https://importlib-resources.readthedocs.io/en/latest/migration.html#pkg-resources-resource-string

  • [ ] Closes #xxxx
  • [ ] Tests added
  • [ ] Passes pre-commit run --all-files
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [ ] New functions/methods are listed in api.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5896/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1088740466 PR_kwDOAMm_X84wR4bX 6109 Remove registration of pandas datetime converter in plotting Illviljan 14371165 closed 0     0 2021-12-26T10:14:47Z 2022-08-12T09:05:45Z 2022-01-09T20:33:29Z MEMBER   0 pydata/xarray/pulls/6109

Back in 2017 the register_pandas_datetime_converter_if_needed was added to workaround matplotlib crashing when handling datetime objects, (#1669). The example that crashed back then was (#1661): ```python import xarray import numpy

da = xarray.DataArray( numpy.arange(3*4).reshape(3,4), dims=("x", "y"), coords={"x": [1,2,3], "y": [numpy.datetime64(f"2000-01-{x:02d}") for x in range(1, 5)]})

da.plot.pcolormesh() ``` This has probably been working by default in matplotlib since 2.2.0, when datetime support was added https://github.com/matplotlib/matplotlib/releases/tag/v2.2.0. (https://github.com/matplotlib/matplotlib/pull/9779)

Related issues: https://github.com/mwaskom/seaborn/issues/1325

  • [x] Closes #6102
  • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6109/reactions",
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1167394407 PR_kwDOAMm_X840WQW1 6351 Run pyupgrade on core/groupby Illviljan 14371165 closed 0     1 2022-03-12T20:46:15Z 2022-08-12T09:05:37Z 2022-03-13T04:21:54Z MEMBER   0 pydata/xarray/pulls/6351

Minor touch up looking through #5950.

  • [x] xref #6244
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6351/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1133868003 PR_kwDOAMm_X84yl7lK 6270 Update pyupgrade to py38-plus Illviljan 14371165 closed 0     1 2022-02-12T10:58:00Z 2022-08-12T09:05:31Z 2022-02-12T13:50:31Z MEMBER   0 pydata/xarray/pulls/6270

xref: #6244

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6270/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1020353782 PR_kwDOAMm_X84s6KU4 5844 Add python 3.10 to CI Illviljan 14371165 closed 0     9 2021-10-07T18:49:43Z 2022-08-12T09:05:25Z 2022-01-21T17:06:43Z MEMBER   0 pydata/xarray/pulls/5844

Waiting on * https://github.com/ContinuumIO/anaconda-issues/issues/12669 * https://github.com/conda/conda/pull/10970 * https://github.com/conda-forge/python-feedstock/pull/511 * https://github.com/conda-forge/numba-feedstock/pull/86 * https://github.com/pydap/pydap/pull/210

  • [ ] Closes #xxxx
  • [ ] Tests added
  • [ ] Passes pre-commit run --all-files
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [ ] New functions/methods are listed in api.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5844/reactions",
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1302560442 PR_kwDOAMm_X847Snca 6779 Move _infer_meta_data and _parse_size to utils Illviljan 14371165 closed 0     0 2022-07-12T20:01:59Z 2022-08-12T09:03:53Z 2022-07-12T20:45:02Z MEMBER   0 pydata/xarray/pulls/6779

Reduce diffs in #6778.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6779/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
990194656 MDExOlB1bGxSZXF1ZXN0NzI4ODE5ODk1 5772 Create benchmark for groupby Illviljan 14371165 closed 0     6 2021-09-07T17:23:50Z 2022-08-12T09:03:28Z 2021-09-20T20:15:30Z MEMBER   0 pydata/xarray/pulls/5772
  • [x] Benchmark from #659
  • [x] Tests added
  • [x] Passes pre-commit run --all-files
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5772/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1034382021 PR_kwDOAMm_X84tlqIi 5893 Only run asv benchmark when labeled Illviljan 14371165 closed 0     1 2021-10-24T10:44:17Z 2022-08-12T09:02:27Z 2021-10-24T11:35:42Z MEMBER   0 pydata/xarray/pulls/5893

Small fix to #5796. The benchmark was only intended to run when the PR has the label run-benchmark. I split the if condition in multiple lines for better readability thinking it didn't change the function but it did.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5893/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1325613350 PR_kwDOAMm_X848fiwZ 6862 Add typing to some interval functions Illviljan 14371165 closed 0     0 2022-08-02T10:02:57Z 2022-08-12T09:02:21Z 2022-08-02T20:43:08Z MEMBER   0 pydata/xarray/pulls/6862

Reduce diffs in #6778. _interval_to_double_bound_points was returning a list instead of ndarray which I had some issues with.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6862/reactions",
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1318779952 PR_kwDOAMm_X848I_BC 6832 Convert name to string in label_from_attrs Illviljan 14371165 closed 0     2 2022-07-26T21:40:38Z 2022-08-12T09:02:01Z 2022-07-26T22:48:39Z MEMBER   0 pydata/xarray/pulls/6832

Make sure name is a string. Use the same .format method as in _get_units_from_attrs to convert to string.

  • [x] Closes #6826
  • [x] Tests added
  • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6832/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1324163858 PR_kwDOAMm_X848auLe 6856 Better error message in _infer_meta_data Illviljan 14371165 closed 0     0 2022-08-01T10:06:58Z 2022-08-12T09:01:36Z 2022-08-01T16:59:51Z MEMBER   0 pydata/xarray/pulls/6856

Reduce diffs in #6778. I remember finding it annoying that I got a list of the valid strings but not the actual string used.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6856/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
996475523 PR_kwDOAMm_X84rwPey 5796 Add asv benchmark jobs to CI Illviljan 14371165 closed 0     16 2021-09-14T22:00:49Z 2022-08-12T09:01:15Z 2021-10-24T10:08:02Z MEMBER   0 pydata/xarray/pulls/5796

Workflow based on the version from scikit-image. Modfied to have asv.conf.json inside a subdirectory and triggers every push if the PR has the run-benchmark label.

Notes: * https://github.com/scikit-image/scikit-image doesn't have the same benchmark folder setup, for example config file is in root directory, other folder names. * https://github.com/numpy/numpy has same folder name as sckit-image. config file is in the folder however.

References: * https://labs.quansight.org/blog/2021/08/github-actions-benchmarks/ * https://github.com/scikit-image/scikit-image/pull/5424 * https://github.com/jaimergp/scikit-image/pull/1

Tests checked:

  • [x] interp
  • [x] pandas
  • [x] repr
  • [x] combine
  • [x] datarray_missing
  • [x] dataset_io - Skipped too difficult to understand. Some of the tests are possibly broken.
  • [x] indexing
  • [x] reindexing
  • [x] rolling - Some division by 0 prints left.
  • [x] unstacking

TODO: * self.setup_cache

  • [x] Related to #4648
  • [x] Tests added
  • [x] Passes pre-commit run --all-files
  • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5796/reactions",
    "total_count": 2,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 2,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
899015876 MDExOlB1bGxSZXF1ZXN0NjUwNzg2MDQ1 5365 Add support for cross product Illviljan 14371165 closed 0     36 2021-05-23T13:03:42Z 2022-08-12T09:00:21Z 2021-12-29T07:54:37Z MEMBER   0 pydata/xarray/pulls/5365

Adds support for the cross product.

New tricks possible thanks to xarray: * When coords are defined you can fill with 2 values instead of only 1 like numpy. * When coords are defined you can fill inbetween values as well instead of just appending zeros at the end like numpy.

  • [x] Closes #3279
  • [x] Tests added
  • [x] Passes pre-commit run --all-files
  • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [x] New functions/methods are listed in api.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5365/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1326509734 PR_kwDOAMm_X848ikDG 6871 Handle None in assert_valid_xy Illviljan 14371165 closed 0     3 2022-08-02T23:37:19Z 2022-08-12T08:59:59Z 2022-08-03T22:08:45Z MEMBER   0 pydata/xarray/pulls/6871

Reduce diffs in #6778. * Handle None as the error message suggest should be possible * Add some typing while at it.

mypy noticed that Hashable cannot use ", ".join-method so forcing them to str instead. Should be the same problem in #6856 but Frozen returns Any instead of Hashable for some reason.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6871/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1332554764 PR_kwDOAMm_X8482bc3 6898 Fix mypy CI Illviljan 14371165 closed 0     0 2022-08-09T00:35:19Z 2022-08-12T08:59:42Z 2022-08-09T01:30:24Z MEMBER   0 pydata/xarray/pulls/6898

Fixes: xarray/tests/test_backends_file_manager.py:56: error: Incompatible types in assignment (expression has type "_GeneratorContextManager[Any]", variable has type "WarningsChecker") [assignment] Just added a ignore.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6898/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1332546810 PR_kwDOAMm_X8482ZvM 6897 Type xr.tutorial Illviljan 14371165 closed 0     1 2022-08-09T00:20:19Z 2022-08-12T08:59:30Z 2022-08-10T07:40:18Z MEMBER   0 pydata/xarray/pulls/6897

Add some typing to the open_dataset functions. Was doing some debugging and I only got Any when trying to simplify the problem with tutorial data.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6897/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 5035.74ms · About: xarray-datasette