issues
5 rows where comments = 7, type = "pull" and user = 6213168 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
671108068 | MDExOlB1bGxSZXF1ZXN0NDYxMzM1NDAx | 4296 | Increase support window of all dependencies | crusaderky 6213168 | closed | 0 | crusaderky 6213168 | 7 | 2020-08-01T18:55:54Z | 2020-08-14T09:52:46Z | 2020-08-14T09:52:42Z | MEMBER | 0 | pydata/xarray/pulls/4296 | Closes #4295 Increase width of the sliding window for minimum supported version: - setuptools from 6 months sliding window to hardcoded >= 38.4, and to 42 months sliding window starting from July 2021 - dask and distributed from 6 months sliding window to hardcoded >= 2.9, and to 12 months sliding window starting from January 2021 - all other libraries from 6 months to 12 months sliding window |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4296/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||
522935511 | MDExOlB1bGxSZXF1ZXN0MzQxMDM3NTg5 | 3533 | 2x~5x speed up for isel() in most cases | crusaderky 6213168 | closed | 0 | 7 | 2019-11-14T15:34:24Z | 2019-12-05T16:45:40Z | 2019-12-05T16:39:40Z | MEMBER | 0 | pydata/xarray/pulls/3533 | Yet another major improvement for #2799. Achieve a 2x to 5x boost in isel performance when slicing small arrays by int, slice, list of int, scalar ndarray, or 1-dimensional ndarray. ```python import xarray da = xarray.DataArray([[1, 2], [3, 4]], dims=['x', 'y']) v = da.variable a = da.variable.values ds = da.to_dataset(name="d") ds_with_idx = xarray.Dataset({ 'x': [10, 20], 'y': [100, 200], 'd': (('x', 'y'), [[1, 2], [3, 4]]) }) da_with_idx = ds_with_idx.d before -> after%timeit a[0] # 121 ns %timeit v[0] # 7 µs %timeit v.isel(x=0) # 10 µs %timeit da[0] # 65 µs -> 15 µs %timeit da.isel(x=0) # 63 µs -> 13 µs %timeit ds.isel(x=0) # 48 µs -> 24 µs %timeit da_with_idx[0] # 209 µs -> 82 µs %timeit da_with_idx.isel(x=0, drop=False) # 135 µs -> 34 µs %timeit da_with_idx.isel(x=0, drop=True) # 101 µs -> 34 µs %timeit ds_with_idx.isel(x=0, drop=False) # 90 µs -> 49 µs %timeit ds_with_idx.isel(x=0, drop=True) # 65 µs -> 49 µs ``` Marked as WIP because this commands running the asv suite to verify there are no regressions for large arrays. (on a separate note, we really need to add the small size cases to asv - as discussed in #3382). This profoundly alters one of the most important methods in xarray and I must confess it makes me nervous, particularly as I am unsure if the test coverage of DataArray.isel() is as through as that for Dataset.isel(). |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3533/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
497945632 | MDExOlB1bGxSZXF1ZXN0MzIwOTgwNzIw | 3340 | CI environments overhaul | crusaderky 6213168 | closed | 0 | 7 | 2019-09-24T22:01:10Z | 2019-09-25T01:50:08Z | 2019-09-25T01:40:55Z | MEMBER | 0 | pydata/xarray/pulls/3340 | Propaedeutic CI work to #3222.
Added packages to py36.yml (net of changes in order): + black + hypothesis + nc-time-axis + numba + numbagg + pynio (https://github.com/pydata/xarray/issues/3154 seems to be now fixed upstream) + sparse Added packages to py37.yml (net of changes in order):
Added packages to py37-windows.yml (net of changes in order):
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3340/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
462401539 | MDExOlB1bGxSZXF1ZXN0MjkzMTAxODQx | 3065 | kwargs.pop() cleanup | crusaderky 6213168 | closed | 0 | 7 | 2019-06-30T12:47:07Z | 2019-07-09T20:06:13Z | 2019-07-01T01:58:50Z | MEMBER | 0 | pydata/xarray/pulls/3065 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3065/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
254841785 | MDExOlB1bGxSZXF1ZXN0MTM5MDI5NzMx | 1551 | Load nonindex coords ahead of concat() | crusaderky 6213168 | closed | 0 | 0.10 2415632 | 7 | 2017-09-02T23:19:03Z | 2017-10-09T23:32:50Z | 2017-10-09T21:15:31Z | MEMBER | 0 | pydata/xarray/pulls/1551 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1551/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);