issue_comments
9 rows where user = 9312831 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, created_at (date), updated_at (date)
user 1
- miniufo · 9 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1105918933 | https://github.com/pydata/xarray/issues/6493#issuecomment-1105918933 | https://api.github.com/repos/pydata/xarray/issues/6493 | IC_kwDOAMm_X85B6vvV | miniufo 9312831 | 2022-04-22T01:40:46Z | 2022-04-22T01:40:46Z | NONE | Oh, I see the release of xgcm of 0.7.0. It is really a great update! I also find the A quite question is that has the xgcm been refactored using |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
boundary conditions for differentiate() 1206634329 | |
1102107532 | https://github.com/pydata/xarray/issues/6493#issuecomment-1102107532 | https://api.github.com/repos/pydata/xarray/issues/6493 | IC_kwDOAMm_X85BsNOM | miniufo 9312831 | 2022-04-19T05:43:05Z | 2022-04-19T05:43:05Z | NONE | Thanks to you guys here @Illviljan @TomNicholas @dcherian. I've been a user of xgcm for quite a time. So you can see my proposal just follows the style of xgcm. I am working on my For most of the cases, lat/lon-type grids are uniform and on the Arakawa A grid. So xarray's I'll give a try with |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
boundary conditions for differentiate() 1206634329 | |
1074983948 | https://github.com/pydata/xarray/issues/6399#issuecomment-1074983948 | https://api.github.com/repos/pydata/xarray/issues/6399 | IC_kwDOAMm_X85AEvQM | miniufo 9312831 | 2022-03-22T10:14:17Z | 2022-03-22T10:14:17Z | NONE | OK, thanks again. This is clear to me now. So this should be a |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
DataArray.plot.pcolormesh with kwarg shading='gouraud' 1176172498 | |
1074939174 | https://github.com/pydata/xarray/issues/6399#issuecomment-1074939174 | https://api.github.com/repos/pydata/xarray/issues/6399 | IC_kwDOAMm_X85AEkUm | miniufo 9312831 | 2022-03-22T09:39:10Z | 2022-03-22T09:39:10Z | NONE | Thanks @mathause , that works well. After searching the doc on |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
DataArray.plot.pcolormesh with kwarg shading='gouraud' 1176172498 | |
621317315 | https://github.com/pydata/xarray/issues/4011#issuecomment-621317315 | https://api.github.com/repos/pydata/xarray/issues/4011 | MDEyOklzc3VlQ29tbWVudDYyMTMxNzMxNQ== | miniufo 9312831 | 2020-04-29T16:20:54Z | 2020-04-29T16:20:54Z | NONE | Thanks @dcherian. I use the When the group contains nothing, I may assign |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
missing empty group when iterate over groupby_bins 607718350 | |
620581409 | https://github.com/pydata/xarray/issues/4011#issuecomment-620581409 | https://api.github.com/repos/pydata/xarray/issues/4011 | MDEyOklzc3VlQ29tbWVudDYyMDU4MTQwOQ== | miniufo 9312831 | 2020-04-28T12:41:43Z | 2020-04-28T12:41:43Z | NONE | When I use |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
missing empty group when iterate over groupby_bins 607718350 | |
605456013 | https://github.com/pydata/xarray/issues/3896#issuecomment-605456013 | https://api.github.com/repos/pydata/xarray/issues/3896 | MDEyOklzc3VlQ29tbWVudDYwNTQ1NjAxMw== | miniufo 9312831 | 2020-03-28T14:39:06Z | 2020-03-28T14:39:06Z | NONE |
You're right. That is used for debuging the intermediate results. Thanks again @keewis @max-sixty. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
consecutive time selection 588126763 | |
605395619 | https://github.com/pydata/xarray/issues/3896#issuecomment-605395619 | https://api.github.com/repos/pydata/xarray/issues/3896 | MDEyOklzc3VlQ29tbWVudDYwNTM5NTYxOQ== | miniufo 9312831 | 2020-03-28T05:02:59Z | 2020-03-28T05:02:59Z | NONE | Hi @keewis, this is really a smart way, using
sst = xr.DataArray( np.array( [0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0.] ), dims="time", coords={"time": np.arange(24)}, name="sst", ) ElNino = continuous_meet(sst > 0.5, count=5, dim='time') sst.plot.step(linewidth=3)
sst.where(ElNino).plot.step(linewidth=2)
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
consecutive time selection 588126763 | |
604776072 | https://github.com/pydata/xarray/issues/3896#issuecomment-604776072 | https://api.github.com/repos/pydata/xarray/issues/3896 | MDEyOklzc3VlQ29tbWVudDYwNDc3NjA3Mg== | miniufo 9312831 | 2020-03-27T02:01:54Z | 2020-03-27T02:01:54Z | NONE | Hi @max-sixty, thanks for your kind help. But I found it works not as I expected. If the SST has the values |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
consecutive time selection 588126763 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 4