issue_comments
9 rows where user = 9312831 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, created_at (date), updated_at (date)
user 1
- miniufo · 9 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1105918933 | https://github.com/pydata/xarray/issues/6493#issuecomment-1105918933 | https://api.github.com/repos/pydata/xarray/issues/6493 | IC_kwDOAMm_X85B6vvV | miniufo 9312831 | 2022-04-22T01:40:46Z | 2022-04-22T01:40:46Z | NONE | Oh, I see the release of xgcm of 0.7.0. It is really a great update! I also find the A quite question is that has the xgcm been refactored using |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
boundary conditions for differentiate() 1206634329 | |
| 1102107532 | https://github.com/pydata/xarray/issues/6493#issuecomment-1102107532 | https://api.github.com/repos/pydata/xarray/issues/6493 | IC_kwDOAMm_X85BsNOM | miniufo 9312831 | 2022-04-19T05:43:05Z | 2022-04-19T05:43:05Z | NONE | Thanks to you guys here @Illviljan @TomNicholas @dcherian. I've been a user of xgcm for quite a time. So you can see my proposal just follows the style of xgcm. I am working on my For most of the cases, lat/lon-type grids are uniform and on the Arakawa A grid. So xarray's I'll give a try with |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
boundary conditions for differentiate() 1206634329 | |
| 1074983948 | https://github.com/pydata/xarray/issues/6399#issuecomment-1074983948 | https://api.github.com/repos/pydata/xarray/issues/6399 | IC_kwDOAMm_X85AEvQM | miniufo 9312831 | 2022-03-22T10:14:17Z | 2022-03-22T10:14:17Z | NONE | OK, thanks again. This is clear to me now. So this should be a |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
DataArray.plot.pcolormesh with kwarg shading='gouraud' 1176172498 | |
| 1074939174 | https://github.com/pydata/xarray/issues/6399#issuecomment-1074939174 | https://api.github.com/repos/pydata/xarray/issues/6399 | IC_kwDOAMm_X85AEkUm | miniufo 9312831 | 2022-03-22T09:39:10Z | 2022-03-22T09:39:10Z | NONE | Thanks @mathause , that works well. After searching the doc on |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
DataArray.plot.pcolormesh with kwarg shading='gouraud' 1176172498 | |
| 621317315 | https://github.com/pydata/xarray/issues/4011#issuecomment-621317315 | https://api.github.com/repos/pydata/xarray/issues/4011 | MDEyOklzc3VlQ29tbWVudDYyMTMxNzMxNQ== | miniufo 9312831 | 2020-04-29T16:20:54Z | 2020-04-29T16:20:54Z | NONE | Thanks @dcherian. I use the When the group contains nothing, I may assign |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
missing empty group when iterate over groupby_bins 607718350 | |
| 620581409 | https://github.com/pydata/xarray/issues/4011#issuecomment-620581409 | https://api.github.com/repos/pydata/xarray/issues/4011 | MDEyOklzc3VlQ29tbWVudDYyMDU4MTQwOQ== | miniufo 9312831 | 2020-04-28T12:41:43Z | 2020-04-28T12:41:43Z | NONE | When I use |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
missing empty group when iterate over groupby_bins 607718350 | |
| 605456013 | https://github.com/pydata/xarray/issues/3896#issuecomment-605456013 | https://api.github.com/repos/pydata/xarray/issues/3896 | MDEyOklzc3VlQ29tbWVudDYwNTQ1NjAxMw== | miniufo 9312831 | 2020-03-28T14:39:06Z | 2020-03-28T14:39:06Z | NONE |
You're right. That is used for debuging the intermediate results. Thanks again @keewis @max-sixty. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
consecutive time selection 588126763 | |
| 605395619 | https://github.com/pydata/xarray/issues/3896#issuecomment-605395619 | https://api.github.com/repos/pydata/xarray/issues/3896 | MDEyOklzc3VlQ29tbWVudDYwNTM5NTYxOQ== | miniufo 9312831 | 2020-03-28T05:02:59Z | 2020-03-28T05:02:59Z | NONE | Hi @keewis, this is really a smart way, using
sst = xr.DataArray( np.array( [0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0.] ), dims="time", coords={"time": np.arange(24)}, name="sst", ) ElNino = continuous_meet(sst > 0.5, count=5, dim='time') sst.plot.step(linewidth=3)
sst.where(ElNino).plot.step(linewidth=2)
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
consecutive time selection 588126763 | |
| 604776072 | https://github.com/pydata/xarray/issues/3896#issuecomment-604776072 | https://api.github.com/repos/pydata/xarray/issues/3896 | MDEyOklzc3VlQ29tbWVudDYwNDc3NjA3Mg== | miniufo 9312831 | 2020-03-27T02:01:54Z | 2020-03-27T02:01:54Z | NONE | Hi @max-sixty, thanks for your kind help. But I found it works not as I expected. If the SST has the values |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
consecutive time selection 588126763 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
issue 4