issue_comments: 605395619
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/3896#issuecomment-605395619 | https://api.github.com/repos/pydata/xarray/issues/3896 | 605395619 | MDEyOklzc3VlQ29tbWVudDYwNTM5NTYxOQ== | 9312831 | 2020-03-28T05:02:59Z | 2020-03-28T05:02:59Z | NONE | Hi @keewis, this is really a smart way, using
sst = xr.DataArray( np.array( [0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0.] ), dims="time", coords={"time": np.arange(24)}, name="sst", ) ElNino = continuous_meet(sst > 0.5, count=5, dim='time') sst.plot.step(linewidth=3)
sst.where(ElNino).plot.step(linewidth=2)
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
588126763 |