issue_comments
30 rows where user = 7799184 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, reactions, created_at (date), updated_at (date)
user 1
- rafa-guedes · 30 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1153302528 | https://github.com/pydata/xarray/issues/6688#issuecomment-1153302528 | https://api.github.com/repos/pydata/xarray/issues/6688 | IC_kwDOAMm_X85EvgAA | rafa-guedes 7799184 | 2022-06-12T21:56:10Z | 2022-06-12T21:56:10Z | CONTRIBUTOR | That works thanks. I just checked the example in the docs now and that uses |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
2D extrapolation not working 1268630439 | |
1010549000 | https://github.com/pydata/xarray/issues/6036#issuecomment-1010549000 | https://api.github.com/repos/pydata/xarray/issues/6036 | IC_kwDOAMm_X848O8EI | rafa-guedes 7799184 | 2022-01-12T01:49:52Z | 2022-01-12T01:49:52Z | CONTRIBUTOR | Related issue in dask: https://github.com/dask/dask/issues/6363 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`xarray.open_zarr()` takes too long to lazy load when the data arrays contain a large number of Dask chunks. 1068225524 | |
748554375 | https://github.com/pydata/xarray/pull/4461#issuecomment-748554375 | https://api.github.com/repos/pydata/xarray/issues/4461 | MDEyOklzc3VlQ29tbWVudDc0ODU1NDM3NQ== | rafa-guedes 7799184 | 2020-12-20T02:35:40Z | 2020-12-20T09:10:27Z | CONTRIBUTOR |
@rsignell-usgs one other thing that can largely speed up loading of metadata / coordinates is ensuring coordinate variables are stored in one single chunk. For this particular dataset, chunk size for One thing we have been having performance issues with is with loading coordinates / metadata from zarr archives that have too many chunks (millions), even when metadata is consolidated and coordinates are in one single chunk. There is an open issue in dask about this. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Allow fsspec/zarr/mfdataset 709187212 | |
721504192 | https://github.com/pydata/xarray/pull/4035#issuecomment-721504192 | https://api.github.com/repos/pydata/xarray/issues/4035 | MDEyOklzc3VlQ29tbWVudDcyMTUwNDE5Mg== | rafa-guedes 7799184 | 2020-11-04T04:23:58Z | 2020-11-04T04:23:58Z | CONTRIBUTOR | @shoyer thanks for implementing this, it is going to be very useful. I am trying to write this dataset below: dsregion: ``` <xarray.Dataset> Dimensions: (latitude: 2041, longitude: 4320, time: 31) Coordinates: * latitude (latitude) float32 -80.0 -79.916664 -79.833336 ... 89.916664 90.0 * time (time) datetime64[ns] 2008-10-01T12:00:00 ... 2008-10-31T12:00:00 * longitude (longitude) float32 -180.0 -179.91667 ... 179.83333 179.91667 Data variables: vo (time, latitude, longitude) float32 dask.array<chunksize=(30, 510, 1080), meta=np.ndarray> uo (time, latitude, longitude) float32 dask.array<chunksize=(30, 510, 1080), meta=np.ndarray> sst (time, latitude, longitude) float32 dask.array<chunksize=(30, 510, 1080), meta=np.ndarray> ssh (time, latitude, longitude) float32 dask.array<chunksize=(30, 510, 1080), meta=np.ndarray> ``` As a region of this other dataset: dset:
Using the following call:
But I got stuck on the conditional below within
Apparently because
Should this checking be performed for all variables, or only for data_variables? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Support parallel writes to regions of zarr stores 613012939 | |
610615621 | https://github.com/pydata/xarray/issues/3942#issuecomment-610615621 | https://api.github.com/repos/pydata/xarray/issues/3942 | MDEyOklzc3VlQ29tbWVudDYxMDYxNTYyMQ== | rafa-guedes 7799184 | 2020-04-07T20:55:29Z | 2020-04-07T21:07:31Z | CONTRIBUTOR | Yep I managed to overcome this by manually setting encoding parameters, just wondering if there would be any downside in preferring |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Time dtype encoding defaulting to `int64` when writing netcdf or zarr 595492608 | |
572293244 | https://github.com/pydata/xarray/issues/2656#issuecomment-572293244 | https://api.github.com/repos/pydata/xarray/issues/2656 | MDEyOklzc3VlQ29tbWVudDU3MjI5MzI0NA== | rafa-guedes 7799184 | 2020-01-08T22:42:01Z | 2020-01-08T22:43:25Z | CONTRIBUTOR | Pandas has an option |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
dataset info in .json format 396285440 | |
572054942 | https://github.com/pydata/xarray/issues/2656#issuecomment-572054942 | https://api.github.com/repos/pydata/xarray/issues/2656 | MDEyOklzc3VlQ29tbWVudDU3MjA1NDk0Mg== | rafa-guedes 7799184 | 2020-01-08T13:36:41Z | 2020-01-08T13:36:41Z | CONTRIBUTOR | Would it make sense having |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
dataset info in .json format 396285440 | |
563330352 | https://github.com/pydata/xarray/issues/2511#issuecomment-563330352 | https://api.github.com/repos/pydata/xarray/issues/2511 | MDEyOklzc3VlQ29tbWVudDU2MzMzMDM1Mg== | rafa-guedes 7799184 | 2019-12-09T16:53:38Z | 2019-12-09T16:53:38Z | CONTRIBUTOR | I'm having similar issue, here is an example: ``` import numpy as np import dask.array as da import xarray as xr darr = xr.DataArray(data=[0.2, 0.4, 0.6], coords={"z": range(3)}, dims=("z",)) good_indexer = xr.DataArray( data=np.random.randint(0, 3, 8).reshape(4, 2).astype(int), coords={"y": range(4), "x": range(2)}, dims=("y", "x") ) bad_indexer = xr.DataArray( data=da.random.randint(0, 3, 8).reshape(4, 2).astype(int), coords={"y": range(4), "x": range(2)}, dims=("y", "x") ) In [5]: darr In [6]: good_indexer In [7]: bad_indexer In [8]: darr[good_indexer] In [9]: darr[bad_indexer]TypeError Traceback (most recent call last) <ipython-input-8-2a57c1a2eade> in <module> ----> 1 darr[bad_indexer] ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/dataarray.py in getitem(self, key) 638 else: 639 # xarray-style array indexing --> 640 return self.isel(indexers=self._item_key_to_dict(key)) 641 642 def setitem(self, key: Any, value: Any) -> None: ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/dataarray.py in isel(self, indexers, drop, **indexers_kwargs) 1012 """ 1013 indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "isel") -> 1014 ds = self._to_temp_dataset().isel(drop=drop, indexers=indexers) 1015 return self._from_temp_dataset(ds) 1016 ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/dataset.py in isel(self, indexers, drop, **indexers_kwargs) 1920 if name in self.indexes: 1921 new_var, new_index = isel_variable_and_index( -> 1922 name, var, self.indexes[name], var_indexers 1923 ) 1924 if new_index is not None: ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/indexes.py in isel_variable_and_index(name, variable, index, indexers) 79 ) 80 ---> 81 new_variable = variable.isel(indexers) 82 83 if new_variable.dims != (name,): ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/variable.py in isel(self, indexers, **indexers_kwargs) 1052 1053 key = tuple(indexers.get(dim, slice(None)) for dim in self.dims) -> 1054 return self[key] 1055 1056 def squeeze(self, dim=None): ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/variable.py in getitem(self, key)
700 array ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/variable.py in _broadcast_indexes(self, key) 557 if isinstance(k, Variable): 558 if len(k.dims) > 1: --> 559 return self._broadcast_indexes_vectorized(key) 560 dims.append(k.dims[0]) 561 elif not isinstance(k, integer_types): ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/variable.py in _broadcast_indexes_vectorized(self, key) 685 new_order = None 686 --> 687 return out_dims, VectorizedIndexer(tuple(out_key)), new_order 688 689 def getitem(self: VariableType, key) -> VariableType: ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/indexing.py in init(self, key) 447 else: 448 raise TypeError( --> 449 f"unexpected indexer type for {type(self).name}: {k!r}" 450 ) 451 new_key.append(k) TypeError: unexpected indexer type for VectorizedIndexer: dask.array<reshape, shape=(4, 2), dtype=int64, chunksize=(4, 2), chunktype=numpy.ndarray> In [10]: xr.version In [11]: import dask; dask.version |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
551963613 | https://github.com/pydata/xarray/issues/3490#issuecomment-551963613 | https://api.github.com/repos/pydata/xarray/issues/3490 | MDEyOklzc3VlQ29tbWVudDU1MTk2MzYxMw== | rafa-guedes 7799184 | 2019-11-08T19:40:23Z | 2019-11-08T19:40:23Z | CONTRIBUTOR | Perhaps reflected operators (i.e., |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Dataset global attributes dropped when performing operations against numpy data type 518966560 | |
513996346 | https://github.com/pydata/xarray/issues/1524#issuecomment-513996346 | https://api.github.com/repos/pydata/xarray/issues/1524 | MDEyOklzc3VlQ29tbWVudDUxMzk5NjM0Ng== | rafa-guedes 7799184 | 2019-07-22T23:47:13Z | 2019-07-22T23:47:13Z | CONTRIBUTOR | @shoyer does https://github.com/dask/dask/pull/4677 solve those accuracy concerns? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
(trivial) xarray.quantile silently resolves dask arrays 252548859 | |
512663861 | https://github.com/pydata/xarray/issues/2501#issuecomment-512663861 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUxMjY2Mzg2MQ== | rafa-guedes 7799184 | 2019-07-18T04:51:06Z | 2019-07-18T04:52:17Z | CONTRIBUTOR | Hi guys, I'm having some issue that looks similar to @rsignell-usgs. Trying to open 413 netcdf files using ```ipython In [1] import xarray as xr In [2]: dset = xr.open_mfdataset("./bom-ww3/bom-ww3_*.nc", chunks={'time': 744, 'latitude': 100, 'longitude': 100}, parallel=False) In [3]: dset Out[3]: <xarray.Dataset> Dimensions: (latitude: 190, longitude: 289, time: 302092) Coordinates: * longitude (longitude) float32 70.0 70.4 70.8 71.2 ... 184.4 184.8 185.2 * latitude (latitude) float32 -55.6 -55.2 -54.8 -54.4 ... 19.2 19.6 20.0 * time (time) datetime64[ns] 1979-01-01 ... 2013-05-31T23:00:00.000013440 Data variables: hs (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> fp (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> dp (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> wl (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> U10 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> V10 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> hs1 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> hs2 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> tp1 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> tp2 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> lp0 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> lp1 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> lp2 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> th0 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> th1 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> th2 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> hs0 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> tp0 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> ``` Trying to read it on a standard python session gives me core dumped: ```ipython In [1]: import xarray as xr In [2]: dset = xr.open_mfdataset("./bom-ww3/bom-ww3_*.nc", chunks={'time': 744, 'latitude': 100, 'longitude': 100}, parallel=True) Bus error (core dumped) ``` Trying to read it on a dask cluster I get: ```ipython In [1]: from dask.distributed import Client In [2]: import xarray as xr In [3]: client = Client() In [4]: dset = xr.open_mfdataset("./bom-ww3/bom-ww3_*.nc", chunks={'time': 744, 'latitude': 100, 'longitud ...: e': 100}, parallel=True) free(): double free detected in tcache 2free(): double free detected in tcache 2 free(): double free detected in tcache 2 distributed.nanny - WARNING - Worker process 18744 was killed by signal 11 distributed.nanny - WARNING - Restarting worker distributed.nanny - WARNING - Worker process 18740 was killed by signal 6 distributed.nanny - WARNING - Restarting worker distributed.nanny - WARNING - Worker process 18742 was killed by signal 7 distributed.nanny - WARNING - Worker process 18738 was killed by signal 6 distributed.nanny - WARNING - Restarting worker distributed.nanny - WARNING - Restarting worker free(): double free detected in tcache 2munmap_chunk(): invalid pointer free(): double free detected in tcache 2 free(): double free detected in tcache 2 distributed.nanny - WARNING - Worker process 19082 was killed by signal 6 distributed.nanny - WARNING - Restarting worker distributed.nanny - WARNING - Worker process 19073 was killed by signal 6 distributed.nanny - WARNING - Restarting worker KilledWorker Traceback (most recent call last) <ipython-input-4-740561b80fec> in <module>() ----> 1 dset = xr.open_mfdataset("./bom-ww3/bom-ww3_*.nc", chunks={'time': 744, 'latitude': 100, 'longitude': 100}, parallel=True) /usr/local/lib/python3.7/dist-packages/xarray/backends/api.py in open_mfdataset(paths, chunks, concat_dim, compat, preprocess, engine, lock, data_vars, coords, combine, autoclose, parallel, **kwargs) 772 # calling compute here will return the datasets/file_objs lists, 773 # the underlying datasets will still be stored as dask arrays --> 774 datasets, file_objs = dask.compute(datasets, file_objs) 775 776 # Combine all datasets, closing them in case of a ValueError /usr/local/lib/python3.7/dist-packages/dask/base.py in compute(args, kwargs) 444 keys = [x.dask_keys() for x in collections] 445 postcomputes = [x.dask_postcompute() for x in collections] --> 446 results = schedule(dsk, keys, kwargs) 447 return repack([f(r, a) for r, (f, a) in zip(results, postcomputes)]) 448 /home/oceanum/.local/lib/python3.7/site-packages/distributed/client.py in get(self, dsk, keys, restrictions, loose_restrictions, resources, sync, asynchronous, direct, retries, priority, fifo_timeout, actors, **kwargs) 2525 should_rejoin = False 2526 try: -> 2527 results = self.gather(packed, asynchronous=asynchronous, direct=direct) 2528 finally: 2529 for f in futures.values(): /home/oceanum/.local/lib/python3.7/site-packages/distributed/client.py in gather(self, futures, errors, direct, asynchronous) 1821 direct=direct, 1822 local_worker=local_worker, -> 1823 asynchronous=asynchronous, 1824 ) 1825 /home/oceanum/.local/lib/python3.7/site-packages/distributed/client.py in sync(self, func, asynchronous, callback_timeout, args, kwargs) 761 else: 762 return sync( --> 763 self.loop, func, args, callback_timeout=callback_timeout, **kwargs 764 ) 765 /home/oceanum/.local/lib/python3.7/site-packages/distributed/utils.py in sync(loop, func, callback_timeout, args, kwargs) 330 e.wait(10) 331 if error[0]: --> 332 six.reraise(error[0]) 333 else: 334 return result[0] /usr/lib/python3/dist-packages/six.py in reraise(tp, value, tb) 691 if value.traceback is not tb: 692 raise value.with_traceback(tb) --> 693 raise value 694 finally: 695 value = None /home/oceanum/.local/lib/python3.7/site-packages/distributed/utils.py in f() 315 if callback_timeout is not None: 316 future = gen.with_timeout(timedelta(seconds=callback_timeout), future) --> 317 result[0] = yield future 318 except Exception as exc: 319 error[0] = sys.exc_info() /home/oceanum/.local/lib/python3.7/site-packages/tornado/gen.py in run(self) 733 734 try: --> 735 value = future.result() 736 except Exception: 737 exc_info = sys.exc_info() /home/oceanum/.local/lib/python3.7/site-packages/tornado/gen.py in run(self) 740 if exc_info is not None: 741 try: --> 742 yielded = self.gen.throw(*exc_info) # type: ignore 743 finally: 744 # Break up a reference to itself /home/oceanum/.local/lib/python3.7/site-packages/distributed/client.py in _gather(self, futures, errors, direct, local_worker) 1678 exc = CancelledError(key) 1679 else: -> 1680 six.reraise(type(exception), exception, traceback) 1681 raise exc 1682 if errors == "skip": /usr/lib/python3/dist-packages/six.py in reraise(tp, value, tb) 691 if value.traceback is not tb: 692 raise value.with_traceback(tb) --> 693 raise value 694 finally: 695 value = None KilledWorker: ('open_dataset-e7916acb-6d9f-4532-ab76-5b9c1b1a39c2', <Worker 'tcp://10.240.0.5:36019', memory: 0, processing: 63>) ``` Is there anything obviously wrong I'm trying here please? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
323880231 | https://github.com/pydata/xarray/issues/1081#issuecomment-323880231 | https://api.github.com/repos/pydata/xarray/issues/1081 | MDEyOklzc3VlQ29tbWVudDMyMzg4MDIzMQ== | rafa-guedes 7799184 | 2017-08-21T23:44:30Z | 2017-08-21T23:56:54Z | CONTRIBUTOR | I have also hit this issue, this method could be useful. I'm putting below my workaround in case it is any helpful:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Transpose some but not all dimensions 187393785 | |
295993132 | https://github.com/pydata/xarray/issues/1379#issuecomment-295993132 | https://api.github.com/repos/pydata/xarray/issues/1379 | MDEyOklzc3VlQ29tbWVudDI5NTk5MzEzMg== | rafa-guedes 7799184 | 2017-04-21T00:54:28Z | 2017-04-21T10:05:27Z | CONTRIBUTOR | I realised that some of the Datasets I was trying to concatenate had different coordinate values (for coordinates that I was assuming to be the same) so I guess xr.concat was trying to align these coordinates before concatenating and the resultant Dataset ended up being much larger than it should have been. When I ensure I only concatenate Datasets with consistent coordinates, I can do it. However still resource consumption is quite high compared to when I so the same thing with numpy arrays. The memory increased by 42% using xr.concat (against 6% using np.concatenate) and the whole processing took about 4 times longer. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xr.concat consuming too much resources 223231729 | |
295970641 | https://github.com/pydata/xarray/issues/1379#issuecomment-295970641 | https://api.github.com/repos/pydata/xarray/issues/1379 | MDEyOklzc3VlQ29tbWVudDI5NTk3MDY0MQ== | rafa-guedes 7799184 | 2017-04-20T23:41:38Z | 2017-04-20T23:41:38Z | CONTRIBUTOR | Also, reading all Datasets into a list and then trying to concatenate this list of Datasets at once also blows memory up. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xr.concat consuming too much resources 223231729 | |
292853553 | https://github.com/pydata/xarray/issues/1366#issuecomment-292853553 | https://api.github.com/repos/pydata/xarray/issues/1366 | MDEyOklzc3VlQ29tbWVudDI5Mjg1MzU1Mw== | rafa-guedes 7799184 | 2017-04-10T05:32:29Z | 2017-04-10T05:32:29Z | CONTRIBUTOR | That makes sense thanks for explaining @shoyer |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Setting attributes to multi-index coordinate 220533356 | |
289321422 | https://github.com/pydata/xarray/issues/1324#issuecomment-289321422 | https://api.github.com/repos/pydata/xarray/issues/1324 | MDEyOklzc3VlQ29tbWVudDI4OTMyMTQyMg== | rafa-guedes 7799184 | 2017-03-26T22:25:25Z | 2017-03-26T22:25:25Z | CONTRIBUTOR | Thanks! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Choose time units in output netcdf 216626776 | |
202631361 | https://github.com/pydata/xarray/pull/806#issuecomment-202631361 | https://api.github.com/repos/pydata/xarray/issues/806 | MDEyOklzc3VlQ29tbWVudDIwMjYzMTM2MQ== | rafa-guedes 7799184 | 2016-03-28T23:52:52Z | 2016-03-28T23:52:52Z | CONTRIBUTOR | :+1: nice one |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Decorators for registering custom accessors in xarray 143877458 | |
177056825 | https://github.com/pydata/xarray/issues/733#issuecomment-177056825 | https://api.github.com/repos/pydata/xarray/issues/733 | MDEyOklzc3VlQ29tbWVudDE3NzA1NjgyNQ== | rafa-guedes 7799184 | 2016-01-30T03:25:03Z | 2016-01-30T03:25:03Z | CONTRIBUTOR | I personally find it useful - maybe not too intuitive though that the behaviour changes depending on whether there are attrs defined for that coordinate variable or not. I agree some documentation on this would be definitely helpful! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
coordinate variable not written in netcdf file in some cases 129630652 | |
176542303 | https://github.com/pydata/xarray/issues/728#issuecomment-176542303 | https://api.github.com/repos/pydata/xarray/issues/728 | MDEyOklzc3VlQ29tbWVudDE3NjU0MjMwMw== | rafa-guedes 7799184 | 2016-01-29T02:48:17Z | 2016-01-29T02:48:17Z | CONTRIBUTOR | Thanks @shoyer that works (: |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Cannot inherit DataArray anymore in 0.7 release 128980804 | |
176485011 | https://github.com/pydata/xarray/issues/728#issuecomment-176485011 | https://api.github.com/repos/pydata/xarray/issues/728 | MDEyOklzc3VlQ29tbWVudDE3NjQ4NTAxMQ== | rafa-guedes 7799184 | 2016-01-28T23:44:58Z | 2016-01-28T23:44:58Z | CONTRIBUTOR | Thanks @shoyer ,
what do you mean by preserve the signature of |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Cannot inherit DataArray anymore in 0.7 release 128980804 | |
175528287 | https://github.com/pydata/xarray/pull/726#issuecomment-175528287 | https://api.github.com/repos/pydata/xarray/issues/726 | MDEyOklzc3VlQ29tbWVudDE3NTUyODI4Nw== | rafa-guedes 7799184 | 2016-01-27T10:16:40Z | 2016-01-27T10:16:40Z | CONTRIBUTOR | Good point, done it |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Make import error of tokenize more explicit 128749355 | |
170173475 | https://github.com/pydata/xarray/issues/706#issuecomment-170173475 | https://api.github.com/repos/pydata/xarray/issues/706 | MDEyOklzc3VlQ29tbWVudDE3MDE3MzQ3NQ== | rafa-guedes 7799184 | 2016-01-09T00:59:14Z | 2016-01-09T00:59:14Z | CONTRIBUTOR | Cool, thanks @shoyer. Yes @rabernat I totally agree with you and I would be very keen to collaborate on a library like that, I think that would be useful for many people. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Subclassing Dataset and DataArray 124915222 | |
169860884 | https://github.com/pydata/xarray/issues/682#issuecomment-169860884 | https://api.github.com/repos/pydata/xarray/issues/682 | MDEyOklzc3VlQ29tbWVudDE2OTg2MDg4NA== | rafa-guedes 7799184 | 2016-01-08T01:27:52Z | 2016-01-08T01:27:52Z | CONTRIBUTOR | See #709 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
to_netcdf: not able to set dtype encoding with netCDF4 backend 123384529 | |
165520642 | https://github.com/pydata/xarray/issues/681#issuecomment-165520642 | https://api.github.com/repos/pydata/xarray/issues/681 | MDEyOklzc3VlQ29tbWVudDE2NTUyMDY0Mg== | rafa-guedes 7799184 | 2015-12-17T17:24:11Z | 2015-12-17T17:24:11Z | CONTRIBUTOR | I had that happening with python2 as well - just for netcdf4 files though, because of the new string type I guess.. when writing as netcdf4-classic that string output was not shown. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
to_netcdf on Python 3: "string" qualifier on attributes 122776511 | |
157576363 | https://github.com/pydata/xarray/issues/660#issuecomment-157576363 | https://api.github.com/repos/pydata/xarray/issues/660 | MDEyOklzc3VlQ29tbWVudDE1NzU3NjM2Mw== | rafa-guedes 7799184 | 2015-11-18T02:24:52Z | 2015-11-18T02:24:52Z | CONTRIBUTOR | Yes it is @shoyer ! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
time slice cannot be list 117262604 | |
157572531 | https://github.com/pydata/xarray/issues/662#issuecomment-157572531 | https://api.github.com/repos/pydata/xarray/issues/662 | MDEyOklzc3VlQ29tbWVudDE1NzU3MjUzMQ== | rafa-guedes 7799184 | 2015-11-18T02:00:07Z | 2015-11-18T02:00:07Z | CONTRIBUTOR | Awesome, works here too with netCDF4==1.2.1 Thanks! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Problem with checking in Variable._parse_dimensions() (xray.core.variable) 117478779 | |
157570185 | https://github.com/pydata/xarray/issues/662#issuecomment-157570185 | https://api.github.com/repos/pydata/xarray/issues/662 | MDEyOklzc3VlQ29tbWVudDE1NzU3MDE4NQ== | rafa-guedes 7799184 | 2015-11-18T01:43:01Z | 2015-11-18T01:43:01Z | CONTRIBUTOR | Hum... Ok I will try that in another machine too.. The versions are: pandas==0.17.0 netCDF4==1.1.1 scipy==0.15.1 numpy==1.10.1 xray==0.6.1-15-g5109f4f |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Problem with checking in Variable._parse_dimensions() (xray.core.variable) 117478779 | |
157567446 | https://github.com/pydata/xarray/issues/662#issuecomment-157567446 | https://api.github.com/repos/pydata/xarray/issues/662 | MDEyOklzc3VlQ29tbWVudDE1NzU2NzQ0Ng== | rafa-guedes 7799184 | 2015-11-18T01:26:01Z | 2015-11-18T01:26:01Z | CONTRIBUTOR | @shoyer I'm sending you by email (was not able to attach here) a stripped version of one of the files I was using. The code below should reproduce the issue:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Problem with checking in Variable._parse_dimensions() (xray.core.variable) 117478779 | |
157564974 | https://github.com/pydata/xarray/issues/662#issuecomment-157564974 | https://api.github.com/repos/pydata/xarray/issues/662 | MDEyOklzc3VlQ29tbWVudDE1NzU2NDk3NA== | rafa-guedes 7799184 | 2015-11-18T01:09:00Z | 2015-11-18T01:09:00Z | CONTRIBUTOR | @maximilianr I have managed to reproduce this with a different file with different number of dimensions (time, latitude, longitude). So I believe the below example should give same problem if you run on some other file and change the variable / dimension names accordingly: ``` ncvar = 'hs' dset_sliced1 = xray.Dataset() dset_sliced2 = xray.Dataset() dset = xray.open_dataset(filename, decode_times=False) slice_dict1 = {u'latitude': [-30], u'longitude': [0], u'time': [2.83996800e+08, 2.84007600e+08]} dset_sliced1[ncvar] = dset[ncvar].sel(method='nearest', slice_dict1) slice_dict2 = {u'latitude': [-30], u'longitude': [0], u'time': [2.84018400e+08, 2.84029200e+08]} dset_sliced2[ncvar] = dset[ncvar].sel(method='nearest', slice_dict2) dset_sliced1.to_netcdf('test.nc') # This fails xray.concat([dset_sliced1, dset_sliced2], dim='time') # This also fails, same error Traceback: ----> 1 xray.concat([dset_sliced1, dset_sliced2], dim='time') # This also fails /source/xray/xray/core/combine.pyc in concat(objs, dim, data_vars, coords, compat, positions, indexers, mode, concat_over) 113 raise TypeError('can only concatenate xray Dataset and DataArray ' 114 'objects') --> 115 return f(objs, dim, data_vars, coords, compat, positions) 116 117 /source/xray/xray/core/combine.pyc in _dataset_concat(datasets, dim, data_vars, coords, compat, positions) 265 for k in concat_over: 266 vars = ensure_common_dims([ds.variables[k] for ds in datasets]) --> 267 combined = Variable.concat(vars, dim, positions) 268 insert_result_variable(k, combined) 269 /source/xray/xray/core/variable.pyc in concat(cls, variables, dim, positions, shortcut) 711 utils.remove_incompatible_items(attrs, var.attrs) 712 --> 713 return cls(dims, data, attrs) 714 715 def _data_equals(self, other): /source/xray/xray/core/variable.pyc in init(self, dims, data, attrs, encoding, fastpath) 194 """ 195 self._data = _as_compatible_data(data, fastpath=fastpath) --> 196 self._dims = self._parse_dimensions(dims) 197 self._attrs = None 198 self._encoding = None /source/xray/xray/core/variable.pyc in _parse_dimensions(self, dims) 302 raise ValueError('dimensions %s must have the same length as the ' 303 'number of data dimensions, ndim=%s' --> 304 % (dims, self.ndim)) 305 return dims 306 ValueError: dimensions (u'time', u'latitude', u'longitude') must have the same length as the number of data dimensions, ndim=2 ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Problem with checking in Variable._parse_dimensions() (xray.core.variable) 117478779 | |
157559691 | https://github.com/pydata/xarray/issues/662#issuecomment-157559691 | https://api.github.com/repos/pydata/xarray/issues/662 | MDEyOklzc3VlQ29tbWVudDE1NzU1OTY5MQ== | rafa-guedes 7799184 | 2015-11-18T00:43:32Z | 2015-11-18T00:43:32Z | CONTRIBUTOR | I was concatenating them as:
Trying to dump any of them as netcdf:
would also yield the same problem |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Problem with checking in Variable._parse_dimensions() (xray.core.variable) 117478779 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 23