issue_comments
44 rows where user = 7441788 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, reactions, created_at (date), updated_at (date)
user 1
- seth-p · 44 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
856340566 | https://github.com/pydata/xarray/issues/5278#issuecomment-856340566 | https://api.github.com/repos/pydata/xarray/issues/5278 | MDEyOklzc3VlQ29tbWVudDg1NjM0MDU2Ng== | seth-p 7441788 | 2021-06-08T00:02:48Z | 2021-06-08T00:04:28Z | CONTRIBUTOR |
I wouldn't necessarily say that it's particularly bad, but see the discussion following https://github.com/pydata/xarray/pull/2922#issuecomment-601496897. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
DataArray.clip() no longer supports the out argument 879033384 | |
835597488 | https://github.com/pydata/xarray/issues/5278#issuecomment-835597488 | https://api.github.com/repos/pydata/xarray/issues/5278 | MDEyOklzc3VlQ29tbWVudDgzNTU5NzQ4OA== | seth-p 7441788 | 2021-05-09T00:40:08Z | 2021-05-09T00:40:08Z | CONTRIBUTOR | I'm not familiar at all with the various numpy interfaces, so I can't offer any input implementation-wise. But as a user, being able to do operations in place (via |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
DataArray.clip() no longer supports the out argument 879033384 | |
834629871 | https://github.com/pydata/xarray/issues/5278#issuecomment-834629871 | https://api.github.com/repos/pydata/xarray/issues/5278 | MDEyOklzc3VlQ29tbWVudDgzNDYyOTg3MQ== | seth-p 7441788 | 2021-05-07T17:11:01Z | 2021-05-07T17:11:14Z | CONTRIBUTOR |
It lets you reuse memory you already have. In particular for a simple operation like clip, you can do it in-place: |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
DataArray.clip() no longer supports the out argument 879033384 | |
834415185 | https://github.com/pydata/xarray/issues/5261#issuecomment-834415185 | https://api.github.com/repos/pydata/xarray/issues/5261 | MDEyOklzc3VlQ29tbWVudDgzNDQxNTE4NQ== | seth-p 7441788 | 2021-05-07T13:51:46Z | 2021-05-07T13:53:08Z | CONTRIBUTOR | I'm wondering if one could just have a generic implementation of |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Export ufuncs from DataArray API 876394165 | |
695165172 | https://github.com/pydata/xarray/issues/4363#issuecomment-695165172 | https://api.github.com/repos/pydata/xarray/issues/4363 | MDEyOklzc3VlQ29tbWVudDY5NTE2NTE3Mg== | seth-p 7441788 | 2020-09-19T05:00:50Z | 2020-09-19T05:00:50Z | CONTRIBUTOR | { "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Indexing a datetime64[ns] coordinate with a scalar datetime.date produces a KeyError 683657289 | ||
693117098 | https://github.com/pydata/xarray/pull/4292#issuecomment-693117098 | https://api.github.com/repos/pydata/xarray/issues/4292 | MDEyOklzc3VlQ29tbWVudDY5MzExNzA5OA== | seth-p 7441788 | 2020-09-16T01:34:08Z | 2020-09-16T01:34:08Z | CONTRIBUTOR | Does this fix #4363? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix indexing with datetime64[ns] with pandas=1.1 669307837 | |
625530671 | https://github.com/pydata/xarray/issues/4044#issuecomment-625530671 | https://api.github.com/repos/pydata/xarray/issues/4044 | MDEyOklzc3VlQ29tbWVudDYyNTUzMDY3MQ== | seth-p 7441788 | 2020-05-07T22:33:46Z | 2020-05-07T22:33:46Z | CONTRIBUTOR | @TomNicholas , yes, thank you. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset(paths, combine='nested') with and without concat_dim=None 614149170 | |
601885539 | https://github.com/pydata/xarray/pull/2922#issuecomment-601885539 | https://api.github.com/repos/pydata/xarray/issues/2922 | MDEyOklzc3VlQ29tbWVudDYwMTg4NTUzOQ== | seth-p 7441788 | 2020-03-20T19:57:54Z | 2020-03-20T20:00:20Z | CONTRIBUTOR | All good points:
Good idea, though I don't know what the performance hit would be of the extra check (in the case that da does contain NaNs, so the check is for naught).
Well,
Yes. You can continue not supporting NaNs in the weights, yet not explicitly check that there are no NaNs (optionally, if the caller assures you that there are no NaNs).
Correct. These have nothing to do with the NaNs issue. For profiling memory usage, I use |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Feature/weighted 437765416 | |
601709733 | https://github.com/pydata/xarray/pull/2922#issuecomment-601709733 | https://api.github.com/repos/pydata/xarray/issues/2922 | MDEyOklzc3VlQ29tbWVudDYwMTcwOTczMw== | seth-p 7441788 | 2020-03-20T13:47:39Z | 2020-03-20T16:31:14Z | CONTRIBUTOR | @mathause, have you considered using these functions?
- np.average() to calculate weighted |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Feature/weighted 437765416 | |
601708110 | https://github.com/pydata/xarray/pull/2922#issuecomment-601708110 | https://api.github.com/repos/pydata/xarray/issues/2922 | MDEyOklzc3VlQ29tbWVudDYwMTcwODExMA== | seth-p 7441788 | 2020-03-20T13:44:03Z | 2020-03-20T13:52:06Z | CONTRIBUTOR | @mathause, ideally
Either way, this only addresses the Also, perhaps the test Maybe I'm more sensitive to this than others, but I regularly deal with 10-100GB arrays. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Feature/weighted 437765416 | |
601699091 | https://github.com/pydata/xarray/pull/2922#issuecomment-601699091 | https://api.github.com/repos/pydata/xarray/issues/2922 | MDEyOklzc3VlQ29tbWVudDYwMTY5OTA5MQ== | seth-p 7441788 | 2020-03-20T13:25:21Z | 2020-03-20T13:25:21Z | CONTRIBUTOR | @max-sixty, I wish I could, but I'm afraid that I cannot submit code due to employer limitations. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Feature/weighted 437765416 | |
601496897 | https://github.com/pydata/xarray/pull/2922#issuecomment-601496897 | https://api.github.com/repos/pydata/xarray/issues/2922 | MDEyOklzc3VlQ29tbWVudDYwMTQ5Njg5Nw== | seth-p 7441788 | 2020-03-20T02:11:53Z | 2020-03-20T02:12:24Z | CONTRIBUTOR | I realize this is a bit late, but I'm still concerned about memory usage, specifically in https://github.com/pydata/xarray/blob/master/xarray/core/weighted.py#L130 and https://github.com/pydata/xarray/blob/master/xarray/core/weighted.py#L143.
If I would have implemented this using |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Feature/weighted 437765416 | |
594682466 | https://github.com/pydata/xarray/issues/3829#issuecomment-594682466 | https://api.github.com/repos/pydata/xarray/issues/3829 | MDEyOklzc3VlQ29tbWVudDU5NDY4MjQ2Ng== | seth-p 7441788 | 2020-03-04T17:27:09Z | 2020-03-04T17:27:09Z | CONTRIBUTOR | @keewis, thanks for the suggestions. Both seem reasonable. In your first example, if you wanted to prohibit |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset} accessors with parameters 575564170 | |
594128647 | https://github.com/pydata/xarray/issues/3820#issuecomment-594128647 | https://api.github.com/repos/pydata/xarray/issues/3820 | MDEyOklzc3VlQ29tbWVudDU5NDEyODY0Nw== | seth-p 7441788 | 2020-03-03T19:34:39Z | 2020-03-03T19:34:39Z | CONTRIBUTOR | Note that inferring dimensions from coords when it is a list of tuples does still work (with no deprecation warning): ``` In [1]: import numpy as np, xarray as xr In [2]: xr.DataArray(np.zeros((2, 2)), coords=[('x', [1, 2]), ('y', [1, 2])]) |
{ "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Documentation of DataArray does not warn that inferring dimension names is deprecated 574097799 | |
592737661 | https://github.com/pydata/xarray/issues/3810#issuecomment-592737661 | https://api.github.com/repos/pydata/xarray/issues/3810 | MDEyOklzc3VlQ29tbWVudDU5MjczNzY2MQ== | seth-p 7441788 | 2020-02-28T21:29:58Z | 2020-02-28T21:31:31Z | CONTRIBUTOR | Note that with the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 | |
592715925 | https://github.com/pydata/xarray/issues/3810#issuecomment-592715925 | https://api.github.com/repos/pydata/xarray/issues/3810 | MDEyOklzc3VlQ29tbWVudDU5MjcxNTkyNQ== | seth-p 7441788 | 2020-02-28T20:33:43Z | 2020-02-28T20:35:57Z | CONTRIBUTOR | A few minor tweaks needed: ``` In [20]: import bottleneck In [21]: xr.apply_ufunc(
...: lambda x: bottleneck.rankdata(x).reshape(x.shape),
...: d,
...: input_core_dims=[['xyz', 'abc']],
...: output_core_dims=[['xyz', 'abc']],
...: vectorize=True
...: ).transpose(*d.dims) Despite what the docs say, |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 | |
592672463 | https://github.com/pydata/xarray/issues/3810#issuecomment-592672463 | https://api.github.com/repos/pydata/xarray/issues/3810 | MDEyOklzc3VlQ29tbWVudDU5MjY3MjQ2Mw== | seth-p 7441788 | 2020-02-28T18:51:18Z | 2020-02-28T18:52:29Z | CONTRIBUTOR | What's wrong with the following? (Still need to deal with Per https://kwgoodman.github.io/bottleneck-doc/reference.html#bottleneck.rankdata, "The default (axis=None) is to rank the elements of the flattened array." |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 | |
592654794 | https://github.com/pydata/xarray/issues/3810#issuecomment-592654794 | https://api.github.com/repos/pydata/xarray/issues/3810 | MDEyOklzc3VlQ29tbWVudDU5MjY1NDc5NA== | seth-p 7441788 | 2020-02-28T18:06:57Z | 2020-02-28T18:06:57Z | CONTRIBUTOR | Assuming |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 | |
592151913 | https://github.com/pydata/xarray/issues/2017#issuecomment-592151913 | https://api.github.com/repos/pydata/xarray/issues/2017 | MDEyOklzc3VlQ29tbWVudDU5MjE1MTkxMw== | seth-p 7441788 | 2020-02-27T20:04:44Z | 2020-02-27T20:04:44Z | CONTRIBUTOR | I'm afraid I'm not able to submit a PR. Sorry. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
np.minimum.accumulate(da) doesn't work 309098246 | |
592033172 | https://github.com/pydata/xarray/issues/2017#issuecomment-592033172 | https://api.github.com/repos/pydata/xarray/issues/2017 | MDEyOklzc3VlQ29tbWVudDU5MjAzMzE3Mg== | seth-p 7441788 | 2020-02-27T15:55:23Z | 2020-02-27T15:55:23Z | CONTRIBUTOR | I think the only necessary changes are (a) delete the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
np.minimum.accumulate(da) doesn't work 309098246 | |
592027630 | https://github.com/pydata/xarray/issues/2017#issuecomment-592027630 | https://api.github.com/repos/pydata/xarray/issues/2017 | MDEyOklzc3VlQ29tbWVudDU5MjAyNzYzMA== | seth-p 7441788 | 2020-02-27T15:38:05Z | 2020-02-27T15:38:05Z | CONTRIBUTOR | This issue is still relevant. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
np.minimum.accumulate(da) doesn't work 309098246 | |
582613810 | https://github.com/pydata/xarray/issues/3736#issuecomment-582613810 | https://api.github.com/repos/pydata/xarray/issues/3736 | MDEyOklzc3VlQ29tbWVudDU4MjYxMzgxMA== | seth-p 7441788 | 2020-02-05T21:09:43Z | 2020-02-05T21:09:43Z | CONTRIBUTOR | This is fixed in Pandas 1.0.1. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
BUG: datetime.date slicing doesn't work with Pandas 1.0.0 558204984 | |
580897245 | https://github.com/pydata/xarray/issues/3736#issuecomment-580897245 | https://api.github.com/repos/pydata/xarray/issues/3736 | MDEyOklzc3VlQ29tbWVudDU4MDg5NzI0NQ== | seth-p 7441788 | 2020-01-31T20:24:30Z | 2020-01-31T20:30:22Z | CONTRIBUTOR | { "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
BUG: datetime.date slicing doesn't work with Pandas 1.0.0 558204984 | ||
545261919 | https://github.com/pydata/xarray/issues/1635#issuecomment-545261919 | https://api.github.com/repos/pydata/xarray/issues/1635 | MDEyOklzc3VlQ29tbWVudDU0NTI2MTkxOQ== | seth-p 7441788 | 2019-10-23T04:35:37Z | 2019-10-23T04:35:37Z | CONTRIBUTOR | I think this issue is still relevant. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
DataArray.argsort should be deleted 266133430 | |
523374500 | https://github.com/pydata/xarray/issues/3236#issuecomment-523374500 | https://api.github.com/repos/pydata/xarray/issues/3236 | MDEyOklzc3VlQ29tbWVudDUyMzM3NDUwMA== | seth-p 7441788 | 2019-08-21T09:22:35Z | 2019-08-21T09:24:43Z | CONTRIBUTOR | I was thinking a I would be fine with this being an optional kwarg to the actual |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: apply_ufunc logging or callback 483028482 | |
500217864 | https://github.com/pydata/xarray/issues/1266#issuecomment-500217864 | https://api.github.com/repos/pydata/xarray/issues/1266 | MDEyOklzc3VlQ29tbWVudDUwMDIxNzg2NA== | seth-p 7441788 | 2019-06-09T14:50:17Z | 2019-06-09T14:50:17Z | CONTRIBUTOR | I think this is still an issue. |
{ "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Coordinate type changing from string to object 207317762 | |
438749995 | https://github.com/pydata/xarray/issues/1666#issuecomment-438749995 | https://api.github.com/repos/pydata/xarray/issues/1666 | MDEyOklzc3VlQ29tbWVudDQzODc0OTk5NQ== | seth-p 7441788 | 2018-11-14T17:35:17Z | 2018-11-14T17:38:31Z | CONTRIBUTOR | Also, the following code seems to accomplish the same as the above: ``` def apply_func_rolling(func, args, kwargs): # determine rolling parameters, and remove them from kwargs apply_func_kwargs = {'input_core_dims', 'output_core_dims', 'vectorize', 'join', 'dataset_join', 'keep_attrs', 'exclude_dims', 'dataset_fill_value', 'kwargs', 'dask', 'output_dtypes', 'output_sizes'} min_periods = kwargs.pop('min_periods', None) center = kwargs.pop('center', False) dim = xr.core.utils.either_dict_or_kwargs(kwargs.pop('dim', None), {k: v for k, v in kwargs.items() if k not in apply_func_kwargs}, 'apply_func_rolling') if len(dim) != 1: raise ValueError("precisely one rolling dimension must be specified") rolling_dim = list(dim.keys())[0] kwargs.pop(rolling_dim) temp_rolling_dim = 'temp{}__'.format(rolling_dim) # change input_core_dims rolling_dim values to temp_rolling_dim input_core_dims = kwargs.get('input_core_dims', None) if input_core_dims: kwargs['input_core_dims'] = [[(temp_rolling_dim if (dim_ == rolling_dim) else dim_) for dim_ in dims_] for dims_ in input_core_dims] # change exclude_dims rolling_dim values to temp_rolling_dim exclude_dims = kwargs.get('exclude_dims', None) if exclude_dims: kwargs['exclude_dims'] = [[(temp_rolling_dim if (dim_ == rolling_dim) else dim_) for dim_ in dims_] for dims_ in exclude_dims] # call apply_func() with rolling-constructed objects return xr.apply_ufunc(func, [(arg.rolling(dim=dim, min_periods=min_periods, center=center). construct(temp_rolling_dim) if (rolling_dim in arg.dims) else arg) for arg in args], **kwargs) apply_func_rolling(lambda a, b, w: ..., variables, observations, weights, date=N, input_core_dims=[['date', 'dim1', 'dim2', 'var'], ['date', 'dim1', 'dim2'], ['date', 'dim1', 'dim2']], output_core_dims=[['var']], vectorize=True) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Could a DataArrayRolling object compute an arbitrary function on rolling windows? 269297904 | |
438372589 | https://github.com/pydata/xarray/issues/1666#issuecomment-438372589 | https://api.github.com/repos/pydata/xarray/issues/1666 | MDEyOklzc3VlQ29tbWVudDQzODM3MjU4OQ== | seth-p 7441788 | 2018-11-13T17:56:17Z | 2018-11-13T20:16:57Z | CONTRIBUTOR |
Ah. I didn't realize that. Good to know. What I'm actually looking to do is a rolling weighted regression. I have three DataArrays: - observations, dims=('date', 'dim1', 'dim2') - variables, dims=('date', 'dim1', 'dim2', 'var') - weights, dims=('date', 'dim1', 'dim2') I want to calculate a regression_coefficients DataArray with dims=('date', 'var'), where for each date it has the weighted regression coefficients calculated over the trailing N dates (over 'dim1' and 'dim2'). One way would be to put the three DataArrays in a Dataset, and then use a newly-defined OK, I seem to have got my problem working using:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Could a DataArrayRolling object compute an arbitrary function on rolling windows? 269297904 | |
438351586 | https://github.com/pydata/xarray/issues/1666#issuecomment-438351586 | https://api.github.com/repos/pydata/xarray/issues/1666 | MDEyOklzc3VlQ29tbWVudDQzODM1MTU4Ng== | seth-p 7441788 | 2018-11-13T17:06:38Z | 2018-11-13T17:06:38Z | CONTRIBUTOR | I think there are actually a couple different ways ``` from xarray.core.utils import maybe_wrap_array from xarray.core.combine import concat def rolling_apply(rolling, func, args, kwargs): applied = [maybe_wrap_array(label, func(arr, args, **kwargs)) for label, arr in rolling] combined = concat(applied, dim=rolling.obj.coords[rolling.dim]) return combined ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Could a DataArrayRolling object compute an arbitrary function on rolling windows? 269297904 | |
438345386 | https://github.com/pydata/xarray/issues/1666#issuecomment-438345386 | https://api.github.com/repos/pydata/xarray/issues/1666 | MDEyOklzc3VlQ29tbWVudDQzODM0NTM4Ng== | seth-p 7441788 | 2018-11-13T16:50:08Z | 2018-11-13T16:52:13Z | CONTRIBUTOR | The problem I have with |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Could a DataArrayRolling object compute an arbitrary function on rolling windows? 269297904 | |
438344608 | https://github.com/pydata/xarray/issues/1666#issuecomment-438344608 | https://api.github.com/repos/pydata/xarray/issues/1666 | MDEyOklzc3VlQ29tbWVudDQzODM0NDYwOA== | seth-p 7441788 | 2018-11-13T16:48:09Z | 2018-11-13T16:48:09Z | CONTRIBUTOR | Separately, maybe |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Could a DataArrayRolling object compute an arbitrary function on rolling windows? 269297904 | |
438322013 | https://github.com/pydata/xarray/issues/1666#issuecomment-438322013 | https://api.github.com/repos/pydata/xarray/issues/1666 | MDEyOklzc3VlQ29tbWVudDQzODMyMjAxMw== | seth-p 7441788 | 2018-11-13T16:06:24Z | 2018-11-13T16:06:24Z | CONTRIBUTOR | I think what is needed are |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Could a DataArrayRolling object compute an arbitrary function on rolling windows? 269297904 | |
436015893 | https://github.com/pydata/xarray/issues/1077#issuecomment-436015893 | https://api.github.com/repos/pydata/xarray/issues/1077 | MDEyOklzc3VlQ29tbWVudDQzNjAxNTg5Mw== | seth-p 7441788 | 2018-11-05T20:03:48Z | 2018-11-05T20:03:48Z | CONTRIBUTOR | This code isn't particularly pretty, and I'm not sure if it handles all cases, but it enables serialization of MultiIndex indices by calling ``` @xr.register_dataset_accessor('mi') class MiscDatasetAccessor(): def init(self, xarray_obj): self._obj = xarray_obj
``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
MultiIndex serialization to NetCDF 187069161 | |
407159487 | https://github.com/pydata/xarray/issues/2170#issuecomment-407159487 | https://api.github.com/repos/pydata/xarray/issues/2170 | MDEyOklzc3VlQ29tbWVudDQwNzE1OTQ4Nw== | seth-p 7441788 | 2018-07-23T18:39:52Z | 2018-07-23T18:39:52Z | CONTRIBUTOR | I second this request. The following may not be optimal, but seems to work for me as a |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
keepdims=True for xarray reductions 325436508 | |
406639293 | https://github.com/pydata/xarray/pull/2293#issuecomment-406639293 | https://api.github.com/repos/pydata/xarray/issues/2293 | MDEyOklzc3VlQ29tbWVudDQwNjYzOTI5Mw== | seth-p 7441788 | 2018-07-20T15:40:23Z | 2018-07-20T15:40:23Z | CONTRIBUTOR | I added a note to whats-new.rst. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: format_array_flat() always displays first and last items. 341664808 | |
406485754 | https://github.com/pydata/xarray/pull/2293#issuecomment-406485754 | https://api.github.com/repos/pydata/xarray/issues/2293 | MDEyOklzc3VlQ29tbWVudDQwNjQ4NTc1NA== | seth-p 7441788 | 2018-07-20T04:27:51Z | 2018-07-20T04:28:35Z | CONTRIBUTOR | One slight oddity is that |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: format_array_flat() always displays first and last items. 341664808 | |
406390564 | https://github.com/pydata/xarray/pull/2293#issuecomment-406390564 | https://api.github.com/repos/pydata/xarray/issues/2293 | MDEyOklzc3VlQ29tbWVudDQwNjM5MDU2NA== | seth-p 7441788 | 2018-07-19T19:38:24Z | 2018-07-19T19:38:24Z | CONTRIBUTOR | @shoyer, I think I've implemented all your suggestions. Let me know what you think. (I haven't yet updated whats-new.rst.) |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: format_array_flat() always displays first and last items. 341664808 | |
405700114 | https://github.com/pydata/xarray/issues/1186#issuecomment-405700114 | https://api.github.com/repos/pydata/xarray/issues/1186 | MDEyOklzc3VlQ29tbWVudDQwNTcwMDExNA== | seth-p 7441788 | 2018-07-17T19:28:49Z | 2018-07-17T19:28:49Z | CONTRIBUTOR | { "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Including last coordinate values when displaying coordinates 197709208 | ||
405369880 | https://github.com/pydata/xarray/pull/2285#issuecomment-405369880 | https://api.github.com/repos/pydata/xarray/issues/2285 | MDEyOklzc3VlQ29tbWVudDQwNTM2OTg4MA== | seth-p 7441788 | 2018-07-16T20:23:50Z | 2018-07-16T20:23:50Z | CONTRIBUTOR | Replaced with https://github.com/pydata/xarray/pull/2293. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: format_array_flat() always displays first and last items. 341149017 | |
405369643 | https://github.com/pydata/xarray/pull/2293#issuecomment-405369643 | https://api.github.com/repos/pydata/xarray/issues/2293 | MDEyOklzc3VlQ29tbWVudDQwNTM2OTY0Mw== | seth-p 7441788 | 2018-07-16T20:23:02Z | 2018-07-16T20:23:02Z | CONTRIBUTOR | Sample output: ``` (base) C:\Users\Seth\github\xarray>ipython Python 3.6.5 | packaged by conda-forge | (default, Apr 6 2018, 16:13:55) [MSC v.1900 64 bit (AMD64)] Type 'copyright', 'credits' or 'license' for more information IPython 6.4.0 -- An enhanced Interactive Python. Type '?' for help. In [1]: import xarray as xr In [2]: words = "This is the time for all good men to come to the aid of their country".split(' ') In [3]: for i in range(0, len(words) + 1): ...: print("-------------------------------------------------------------------------------") ...: print(xr.DataArray(words[:i], dims=('foo',), coords={'foo': words[:i]})) ...: <xarray.DataArray (foo: 0)> array([], dtype=float64) Coordinates: * foo (foo) float64 <xarray.DataArray (foo: 1)> array(['This'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' <xarray.DataArray (foo: 2)> array(['This', 'is'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' <xarray.DataArray (foo: 3)> array(['This', 'is', 'the'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' <xarray.DataArray (foo: 4)> array(['This', 'is', 'the', 'time'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' <xarray.DataArray (foo: 5)> array(['This', 'is', 'the', 'time', 'for'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' 'for' <xarray.DataArray (foo: 6)> array(['This', 'is', 'the', 'time', 'for', 'all'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' 'for' 'all' <xarray.DataArray (foo: 7)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' 'for' 'all' 'good' <xarray.DataArray (foo: 8)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' 'for' 'all' 'good' 'men' <xarray.DataArray (foo: 9)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' 'for' 'all' 'good' 'men' 'to' <xarray.DataArray (foo: 10)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to', 'come'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' ... 'good' 'men' 'to' 'come' <xarray.DataArray (foo: 11)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to', 'come', 'to'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' 'for' ... 'men' 'to' 'come' 'to' <xarray.DataArray (foo: 12)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to', 'come', 'to', 'the'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' 'for' ... 'to' 'come' 'to' 'the' <xarray.DataArray (foo: 13)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to', 'come', 'to', 'the', 'aid'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' ... 'come' 'to' 'the' 'aid' <xarray.DataArray (foo: 14)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to', 'come', 'to', 'the', 'aid', 'of'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' 'for' ... 'to' 'the' 'aid' 'of' <xarray.DataArray (foo: 15)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to', 'come', 'to', 'the', 'aid', 'of', 'their'], dtype='<U5') Coordinates: * foo (foo) <U5 'This' 'is' 'the' 'time' ... 'the' 'aid' 'of' 'their' <xarray.DataArray (foo: 16)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to', 'come', 'to', 'the', 'aid', 'of', 'their', 'country'], dtype='<U7') Coordinates: * foo (foo) <U7 'This' 'is' 'the' 'time' ... 'aid' 'of' 'their' 'country' ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: format_array_flat() always displays first and last items. 341664808 | |
405368970 | https://github.com/pydata/xarray/pull/2285#issuecomment-405368970 | https://api.github.com/repos/pydata/xarray/issues/2285 | MDEyOklzc3VlQ29tbWVudDQwNTM2ODk3MA== | seth-p 7441788 | 2018-07-16T20:20:38Z | 2018-07-16T20:20:38Z | CONTRIBUTOR | For some reason (presumably due to Github's outage today), this PR isn't updating to reflect the latest commits in my branch. So I'm going to close this one and create a new one. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: format_array_flat() always displays first and last items. 341149017 | |
405305811 | https://github.com/pydata/xarray/pull/2285#issuecomment-405305811 | https://api.github.com/repos/pydata/xarray/issues/2285 | MDEyOklzc3VlQ29tbWVudDQwNTMwNTgxMQ== | seth-p 7441788 | 2018-07-16T16:28:21Z | 2018-07-16T16:28:21Z | CONTRIBUTOR | Sample output: ``` (base) C:\Users\Seth\github\xarray>ipython Python 3.6.5 | packaged by conda-forge | (default, Apr 6 2018, 16:13:55) [MSC v.1900 64 bit (AMD64)] Type 'copyright', 'credits' or 'license' for more information IPython 6.4.0 -- An enhanced Interactive Python. Type '?' for help. In [1]: import xarray as xr In [2]: words = "This is the time for all good men to come to the aid of their country".split(' ') In [3]: for i in range(0, len(words) + 1): ...: print("-------------------------------------------------------------------------------") ...: print(xr.DataArray(words[:i], dims=('foo',), coords={'foo': words[:i]})) ...: <xarray.DataArray (foo: 0)> array([], dtype=float64) Coordinates: * foo (foo) float64 <xarray.DataArray (foo: 1)> array(['This'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' <xarray.DataArray (foo: 2)> array(['This', 'is'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' <xarray.DataArray (foo: 3)> array(['This', 'is', 'the'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' <xarray.DataArray (foo: 4)> array(['This', 'is', 'the', 'time'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' <xarray.DataArray (foo: 5)> array(['This', 'is', 'the', 'time', 'for'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' 'for' <xarray.DataArray (foo: 6)> array(['This', 'is', 'the', 'time', 'for', 'all'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' 'for' 'all' <xarray.DataArray (foo: 7)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' 'for' 'all' 'good' <xarray.DataArray (foo: 8)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' 'for' 'all' 'good' 'men' <xarray.DataArray (foo: 9)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' ... 'all' 'good' 'men' 'to' <xarray.DataArray (foo: 10)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to', 'come'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' ... 'good' 'men' 'to' 'come' <xarray.DataArray (foo: 11)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to', 'come', 'to'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' ... 'men' 'to' 'come' 'to' <xarray.DataArray (foo: 12)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to', 'come', 'to', 'the'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' ... 'to' 'come' 'to' 'the' <xarray.DataArray (foo: 13)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to', 'come', 'to', 'the', 'aid'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' ... 'come' 'to' 'the' 'aid' <xarray.DataArray (foo: 14)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to', 'come', 'to', 'the', 'aid', 'of'], dtype='<U4') Coordinates: * foo (foo) <U4 'This' 'is' 'the' 'time' 'for' ... 'to' 'the' 'aid' 'of' <xarray.DataArray (foo: 15)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to', 'come', 'to', 'the', 'aid', 'of', 'their'], dtype='<U5') Coordinates: * foo (foo) <U5 'This' 'is' 'the' 'time' ... 'the' 'aid' 'of' 'their' <xarray.DataArray (foo: 16)> array(['This', 'is', 'the', 'time', 'for', 'all', 'good', 'men', 'to', 'come', 'to', 'the', 'aid', 'of', 'their', 'country'], dtype='<U7') Coordinates: * foo (foo) <U7 'This' 'is' 'the' 'time' ... 'of' 'their' 'country' ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: format_array_flat() always displays first and last items. 341149017 | |
337672616 | https://github.com/pydata/xarray/issues/1635#issuecomment-337672616 | https://api.github.com/repos/pydata/xarray/issues/1635 | MDEyOklzc3VlQ29tbWVudDMzNzY3MjYxNg== | seth-p 7441788 | 2017-10-18T17:48:28Z | 2017-10-18T18:36:25Z | CONTRIBUTOR | I'm not a fan of auto-flattening either, but that's what One option is to have |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
DataArray.argsort should be deleted 266133430 | |
337623613 | https://github.com/pydata/xarray/issues/1635#issuecomment-337623613 | https://api.github.com/repos/pydata/xarray/issues/1635 | MDEyOklzc3VlQ29tbWVudDMzNzYyMzYxMw== | seth-p 7441788 | 2017-10-18T15:08:57Z | 2017-10-18T15:08:57Z | CONTRIBUTOR | I think that makes sense, though I don't quite understand what would go in its place. Another possibility -- perhaps a bad one -- is to permute the values in the sorted dimension so that they match the resulting values (i.e. something like Note that Alternative suggestion: have BTW, I'm just thinking in terms of |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
DataArray.argsort should be deleted 266133430 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 20