home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

6 rows where user = 20365917 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: issue_url, created_at (date), updated_at (date)

issue 3

  • xarray potential inconstistencies with cftime 4
  • DOC: from examples to tutorials 1
  • Multidimensional `interpolate_na()` 1

user 1

  • hafez-ahmad · 6 ✖

author_association 1

  • NONE 6
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
1120614431 https://github.com/pydata/xarray/issues/6360#issuecomment-1120614431 https://api.github.com/repos/pydata/xarray/issues/6360 IC_kwDOAMm_X85Cyzgf hafez-ahmad 20365917 2022-05-09T04:02:37Z 2022-05-09T16:02:36Z NONE

I am not getting proper plot. It is okay with Arcgis 10.5 , when I am trying xarray, plot looks many missing data or gridded points. Data source: https://giovanni.gsfc.nasa.gov/session/B4259246-EB9D-11EA-A3A4-16015F835E51/D2BACBDC-CE49-11EC-9A98-0352ECEEFA7B/D2BAE400-CE49-11EC-9A98-0352ECEEFA7B///scrubbed.MODISA_L3m_ZLEE_2018_Zeu_lee.20140101.nc https://giovanni.gsfc.nasa.gov/session/B4259246-EB9D-11EA-A3A4-16015F835E51/D2BACBDC-CE49-11EC-9A98-0352ECEEFA7B/D2BAE400-CE49-11EC-9A98-0352ECEEFA7B///scrubbed.MODISA_L3m_ZLEE_2018_Zeu_lee.20150101.nc

faceted plot by month

g=data_mean.MODISA_L3m_ZLEE_2018_Zeu_lee.plot(x='lon',y='lat',col='month',col_wrap=4,cmap='RdBu_r',subplot_kws={ "projection": ccrs.Robinson()},figsize=(20,20)) for i, ax in enumerate(g.axes.flat): ax.set_title(data_mean.month.values[i]) ax.coastlines() ax.add_feature(cfeature.BORDERS.with_scale('50m'), linewidth=0.5, edgecolor='black') ax.gridlines(crs=ccrs.PlateCarree(), linewidth=0.5, linestyle='-')

Would you please help me out with why I am not getting the proper surface?

Thank you

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Multidimensional `interpolate_na()` 1169750048
815880491 https://github.com/pydata/xarray/issues/3564#issuecomment-815880491 https://api.github.com/repos/pydata/xarray/issues/3564 MDEyOklzc3VlQ29tbWVudDgxNTg4MDQ5MQ== hafez-ahmad 20365917 2021-04-08T14:41:59Z 2022-04-21T20:29:30Z NONE

Hey everyone !

is there any way to change or reorder month names [ 'DJF' 'JJA' 'MAM' 'SON'] during seasonal grouping? I like to change 'DJF' 'JJA' 'MAM' 'SON' combination and find out winter season Dec+Jan+Feb+Mar=winter season.

Your assistant highly appreciated.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  DOC: from examples to tutorials 527323165
787289605 https://github.com/pydata/xarray/issues/2437#issuecomment-787289605 https://api.github.com/repos/pydata/xarray/issues/2437 MDEyOklzc3VlQ29tbWVudDc4NzI4OTYwNQ== hafez-ahmad 20365917 2021-02-28T03:43:05Z 2021-02-28T03:43:05Z NONE

@spencerkclark 67935 67966 67994 ... 115355 115385 are actually time. But they are stored aa integer. I like to convert all integer to date. My attached data has exact same time.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray potential inconstistencies with cftime 363326726
787067778 https://github.com/pydata/xarray/issues/2437#issuecomment-787067778 https://api.github.com/repos/pydata/xarray/issues/2437 MDEyOklzc3VlQ29tbWVudDc4NzA2Nzc3OA== hafez-ahmad 20365917 2021-02-27T12:47:37Z 2021-02-27T12:47:37Z NONE

@spencerkclark I like to convert datetime. My dataset time is not familiar. It looks like 456852,85993, is there anyvway to convert 456852 to dmy [01-01-2020]?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray potential inconstistencies with cftime 363326726
786687078 https://github.com/pydata/xarray/issues/2437#issuecomment-786687078 https://api.github.com/repos/pydata/xarray/issues/2437 MDEyOklzc3VlQ29tbWVudDc4NjY4NzA3OA== hafez-ahmad 20365917 2021-02-26T14:39:56Z 2021-02-26T14:39:56Z NONE

Here screenshot of my data here dataset link https://portal.grdc.bafg.de/grdcdownload/external/d94b2ca6-90c3-4220-b0ae-03250f809afe/2021-02-26_08-30.zip I like to convert julian date to normal calendar datetime like (22-01-2020)

thank you Hafez

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray potential inconstistencies with cftime 363326726
786548329 https://github.com/pydata/xarray/issues/2437#issuecomment-786548329 https://api.github.com/repos/pydata/xarray/issues/2437 MDEyOklzc3VlQ29tbWVudDc4NjU0ODMyOQ== hafez-ahmad 20365917 2021-02-26T10:08:47Z 2021-02-26T10:08:47Z NONE

How can I canvert julian to dmy index or datetime in pandas? , I have following dataset Dimensions: id: 170time: 1560 Coordinates: time (time) int64 67935 67966 67994 ... 115355 115385 array([ 67935, 67966, 67994, ..., 115324, 115355, 115385], dtype=int64)

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray potential inconstistencies with cftime 363326726

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 14.941ms · About: xarray-datasette