issue_comments
20 rows where user = 13190237 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, reactions, created_at (date), updated_at (date)
user 1
- ulijh · 20 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
625109242 | https://github.com/pydata/xarray/issues/3868#issuecomment-625109242 | https://api.github.com/repos/pydata/xarray/issues/3868 | MDEyOklzc3VlQ29tbWVudDYyNTEwOTI0Mg== | ulijh 13190237 | 2020-05-07T08:27:26Z | 2020-05-07T08:27:26Z | CONTRIBUTOR | Thanks for implementing this! This is a feature, that we will be using for sure! Mostly with indices of type 1 which, in many cases, can easily be extrapolated. Having this as a default or a switch to enable extrapolation where possible would help a lot! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
What should pad do about IndexVariables? 584461380 | |
623607232 | https://github.com/pydata/xarray/pull/4022#issuecomment-623607232 | https://api.github.com/repos/pydata/xarray/issues/4022 | MDEyOklzc3VlQ29tbWVudDYyMzYwNzIzMg== | ulijh 13190237 | 2020-05-04T17:45:40Z | 2020-05-04T17:45:40Z | CONTRIBUTOR | Thanks @mathause , this works for me. Also with a change of dtype in func, as long as "output_dtypes" is set correctly. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix/apply ufunc meta dtype 611437250 | |
529945663 | https://github.com/pydata/xarray/issues/3297#issuecomment-529945663 | https://api.github.com/repos/pydata/xarray/issues/3297 | MDEyOklzc3VlQ29tbWVudDUyOTk0NTY2Mw== | ulijh 13190237 | 2019-09-10T13:52:59Z | 2019-09-10T13:52:59Z | CONTRIBUTOR | I am in the exact same situation. @DerWeh with the current master you can do
|
{ "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add writing complex data to docs 491215043 | |
525634152 | https://github.com/pydata/xarray/issues/2511#issuecomment-525634152 | https://api.github.com/repos/pydata/xarray/issues/2511 | MDEyOklzc3VlQ29tbWVudDUyNTYzNDE1Mg== | ulijh 13190237 | 2019-08-28T08:12:13Z | 2019-08-28T08:12:13Z | CONTRIBUTOR | I think the problem is somewhere here: I don't think |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
525404314 | https://github.com/pydata/xarray/pull/3244#issuecomment-525404314 | https://api.github.com/repos/pydata/xarray/issues/3244 | MDEyOklzc3VlQ29tbWVudDUyNTQwNDMxNA== | ulijh 13190237 | 2019-08-27T17:31:41Z | 2019-08-27T17:31:41Z | CONTRIBUTOR | Thanks guys! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Make argmin/max work lazy with dask 484212164 | |
525365481 | https://github.com/pydata/xarray/pull/3244#issuecomment-525365481 | https://api.github.com/repos/pydata/xarray/issues/3244 | MDEyOklzc3VlQ29tbWVudDUyNTM2NTQ4MQ== | ulijh 13190237 | 2019-08-27T15:53:46Z | 2019-08-27T15:53:46Z | CONTRIBUTOR | May be this is a stupid question: What's the best way to resolve this conflict, and get the checks to run? Should I do a merge master? Or rebase (seems somewhat of a pain to get the remote up to date)? Thanks for the advice! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Make argmin/max work lazy with dask 484212164 | |
524277968 | https://github.com/pydata/xarray/pull/3244#issuecomment-524277968 | https://api.github.com/repos/pydata/xarray/issues/3244 | MDEyOklzc3VlQ29tbWVudDUyNDI3Nzk2OA== | ulijh 13190237 | 2019-08-23T11:19:45Z | 2019-08-23T11:21:03Z | CONTRIBUTOR | Guys, if you could have a look at the tests I modified (a4c3622) to check how many times things get computed. I tried to integrate it with the existing tests. The number of count check could possibly be applied to some other tests as well. May be there is a smarter way of doing this? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Make argmin/max work lazy with dask 484212164 | |
524078960 | https://github.com/pydata/xarray/pull/3244#issuecomment-524078960 | https://api.github.com/repos/pydata/xarray/issues/3244 | MDEyOklzc3VlQ29tbWVudDUyNDA3ODk2MA== | ulijh 13190237 | 2019-08-22T21:10:27Z | 2019-08-22T21:10:27Z | CONTRIBUTOR | Thanks @max-sixty! Sure, I'll do this tomorrow then. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Make argmin/max work lazy with dask 484212164 | |
524075569 | https://github.com/pydata/xarray/issues/3237#issuecomment-524075569 | https://api.github.com/repos/pydata/xarray/issues/3237 | MDEyOklzc3VlQ29tbWVudDUyNDA3NTU2OQ== | ulijh 13190237 | 2019-08-22T21:00:34Z | 2019-08-22T21:00:34Z | CONTRIBUTOR | Thanks @shoyer. Cool, then this was easier than I expected. I added the patch and nanargmax/min to the nputils in #3244. What do you think? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
``argmax()`` causes dask to compute 483280810 | |
524056506 | https://github.com/pydata/xarray/pull/3221#issuecomment-524056506 | https://api.github.com/repos/pydata/xarray/issues/3221 | MDEyOklzc3VlQ29tbWVudDUyNDA1NjUwNg== | ulijh 13190237 | 2019-08-22T20:04:29Z | 2019-08-22T20:04:29Z | CONTRIBUTOR | Thanks @dcherian and @shoyer for the review and advice! It seems the docs build and the checks are fine now. One more thing, as this is my first PR to xarray: Should I merge/rebase master into the allow_invalid_netcdf branch, or will you guys take it from this point? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Allow invalid_netcdf=True in to_netcdf() 481110823 | |
523952983 | https://github.com/pydata/xarray/issues/3237#issuecomment-523952983 | https://api.github.com/repos/pydata/xarray/issues/3237 | MDEyOklzc3VlQ29tbWVudDUyMzk1Mjk4Mw== | ulijh 13190237 | 2019-08-22T15:22:33Z | 2019-08-22T15:22:33Z | CONTRIBUTOR | Those little changes do solve the MCVE, but break at least one test. I don't have enough of an understanding of the (nan)ops logic in xarray to get around the issue. But may be this helps: The change``` diff --git a/xarray/core/nanops.py b/xarray/core/nanops.py index 9ba4eae2..784a1d01 100644 --- a/xarray/core/nanops.py +++ b/xarray/core/nanops.py @@ -91,17 +91,9 @@ def nanargmin(a, axis=None): fill_value = dtypes.get_pos_infinity(a.dtype) if a.dtype.kind == "O": return _nan_argminmax_object("argmin", fill_value, a, axis=axis) - a, mask = _replace_nan(a, fill_value) - if isinstance(a, dask_array_type): - res = dask_array.argmin(a, axis=axis) - else: - res = np.argmin(a, axis=axis)
def nanargmax(a, axis=None): @@ -109,17 +101,8 @@ def nanargmax(a, axis=None): if a.dtype.kind == "O": return _nan_argminmax_object("argmax", fill_value, a, axis=axis)
def nansum(a, axis=None, dtype=None, out=None, min_count=None): ``` The failing test``` python
... ``` Note: I habe numpy 1.17 instaleed so the error msg here seems missleading. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
``argmax()`` causes dask to compute 483280810 | |
523819932 | https://github.com/pydata/xarray/pull/3221#issuecomment-523819932 | https://api.github.com/repos/pydata/xarray/issues/3221 | MDEyOklzc3VlQ29tbWVudDUyMzgxOTkzMg== | ulijh 13190237 | 2019-08-22T09:08:28Z | 2019-08-22T09:08:28Z | CONTRIBUTOR | Hey guys, I'd like to move this forward, but the doc build failed with the message below.
Thanks! ``` python
ModuleNotFoundError Traceback (most recent call last) <ipython-input-17-9100cd49113c> in <module> ----> 1 da.to_netcdf("complex.nc", engine="h5netcdf", invalid_netcdf=True) ~/work/1/s/xarray/core/dataarray.py in to_netcdf(self, args, kwargs) 2214 dataset = self.to_dataset() 2215 -> 2216 return dataset.to_netcdf(args, **kwargs) 2217 2218 def to_dict(self, data: bool = True) -> dict: ~/work/1/s/xarray/core/dataset.py in to_netcdf(self, path, mode, format, group, engine, encoding, unlimited_dims, compute, invalid_netcdf) 1519 unlimited_dims=unlimited_dims, 1520 compute=compute, -> 1521 invalid_netcdf=invalid_netcdf, 1522 ) 1523 ~/work/1/s/xarray/backends/api.py in to_netcdf(dataset, path_or_file, mode, format, group, engine, encoding, unlimited_dims, compute, multifile, invalid_netcdf) 1052 "unrecognized option 'invalid_netcdf' for engine %s" % engine 1053 ) -> 1054 store = store_open(target, mode, format, group, **kwargs) 1055 1056 if unlimited_dims is None: ~/work/1/s/xarray/backends/h5netcdf_.py in init(self, filename, mode, format, group, lock, autoclose, invalid_netcdf) 81 invalid_netcdf=None, 82 ): ---> 83 import h5netcdf 84 85 if format not in [None, "NETCDF4"]: ModuleNotFoundError: No module named 'h5netcdf' <<<------------------------------------------------------------------------- /home/vsts/work/1/s/xarray/core/dataarray.py:docstring of xarray.DataArray.integrate:12: WARNING: Unexpected indentation. /home/vsts/work/1/s/xarray/core/dataarray.py:docstring of xarray.DataArray.interp:20: WARNING: Inline strong start-string without end-string. /home/vsts/work/1/s/xarray/core/dataarray.py:docstring of xarray.DataArray.interpolate_na:8: WARNING: Definition list ends without a blank line; unexpected unindent. Sphinx parallel build error:
RuntimeError: Non Expected exception in [error]The operation was canceled.``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Allow invalid_netcdf=True in to_netcdf() 481110823 | |
522986699 | https://github.com/pydata/xarray/issues/2511#issuecomment-522986699 | https://api.github.com/repos/pydata/xarray/issues/2511 | MDEyOklzc3VlQ29tbWVudDUyMjk4NjY5OQ== | ulijh 13190237 | 2019-08-20T12:15:18Z | 2019-08-20T18:52:49Z | CONTRIBUTOR | Even though the example from above does work, sadly, the following does not:
TypeError Traceback (most recent call last) <ipython-input-4-3542cdd6d61c> in <module> ----> 1 da[dict(dim_2=idcs)] ~/src/xarray/xarray/core/dataarray.py in getitem(self, key) 604 else: 605 # xarray-style array indexing --> 606 return self.isel(indexers=self._item_key_to_dict(key)) 607 608 def setitem(self, key: Any, value: Any) -> None: ~/src/xarray/xarray/core/dataarray.py in isel(self, indexers, drop, **indexers_kwargs) 986 """ 987 indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "isel") --> 988 ds = self._to_temp_dataset().isel(drop=drop, indexers=indexers) 989 return self._from_temp_dataset(ds) 990 ~/src/xarray/xarray/core/dataset.py in isel(self, indexers, drop, **indexers_kwargs) 1901 indexes[name] = new_index 1902 else: -> 1903 new_var = var.isel(indexers=var_indexers) 1904 1905 variables[name] = new_var ~/src/xarray/xarray/core/variable.py in isel(self, indexers, drop, **indexers_kwargs) 984 if dim in indexers: 985 key[i] = indexers[dim] --> 986 return self[tuple(key)] 987 988 def squeeze(self, dim=None): ~/src/xarray/xarray/core/variable.py in getitem(self, key)
675 array ~/src/xarray/xarray/core/variable.py in _broadcast_indexes(self, key) 532 if isinstance(k, Variable): 533 if len(k.dims) > 1: --> 534 return self._broadcast_indexes_vectorized(key) 535 dims.append(k.dims[0]) 536 elif not isinstance(k, integer_types): ~/src/xarray/xarray/core/variable.py in _broadcast_indexes_vectorized(self, key) 660 new_order = None 661 --> 662 return out_dims, VectorizedIndexer(tuple(out_key)), new_order 663 664 def getitem(self, key): ~/src/xarray/xarray/core/indexing.py in init(self, key) 460 raise TypeError( 461 "unexpected indexer type for {}: {!r}".format( --> 462 type(self).name, k 463 ) 464 ) TypeError: unexpected indexer type for VectorizedIndexer: dask.array<arg_agg-aggregate, shape=(3, 4), dtype=int64, chunksize=(1, 4)> ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
522237633 | https://github.com/pydata/xarray/pull/3221#issuecomment-522237633 | https://api.github.com/repos/pydata/xarray/issues/3221 | MDEyOklzc3VlQ29tbWVudDUyMjIzNzYzMw== | ulijh 13190237 | 2019-08-17T13:38:15Z | 2019-08-17T13:38:15Z | CONTRIBUTOR | Hmm, seems like I broke the docs somehow... I someone could advice me how to fix? Thanks! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Allow invalid_netcdf=True in to_netcdf() 481110823 | |
521918496 | https://github.com/pydata/xarray/pull/3221#issuecomment-521918496 | https://api.github.com/repos/pydata/xarray/issues/3221 | MDEyOklzc3VlQ29tbWVudDUyMTkxODQ5Ng== | ulijh 13190237 | 2019-08-16T07:41:14Z | 2019-08-16T07:41:34Z | CONTRIBUTOR |
Sure, I'll add that when we are happy with the code and tests! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Allow invalid_netcdf=True in to_netcdf() 481110823 | |
498178025 | https://github.com/pydata/xarray/issues/2511#issuecomment-498178025 | https://api.github.com/repos/pydata/xarray/issues/2511 | MDEyOklzc3VlQ29tbWVudDQ5ODE3ODAyNQ== | ulijh 13190237 | 2019-06-03T09:13:49Z | 2019-06-03T09:13:49Z | CONTRIBUTOR | As of version 0.12 indexing with dask arrays works out of the box... I think this can be closed now. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
433304954 | https://github.com/pydata/xarray/issues/2511#issuecomment-433304954 | https://api.github.com/repos/pydata/xarray/issues/2511 | MDEyOklzc3VlQ29tbWVudDQzMzMwNDk1NA== | ulijh 13190237 | 2018-10-26T06:48:54Z | 2018-10-26T06:48:54Z | CONTRIBUTOR | It seem's working fine with the following change but it has a lot of dublicated code... ``` diff --git a/xarray/core/indexing.py b/xarray/core/indexing.py index d51da471..9fe93581 100644 --- a/xarray/core/indexing.py +++ b/xarray/core/indexing.py @@ -7,6 +7,7 @@ from datetime import timedelta import numpy as np import pandas as pd +import dask.array as da from . import duck_array_ops, nputils, utils from .pycompat import ( @@ -420,6 +421,19 @@ class VectorizedIndexer(ExplicitIndexer): 'have different numbers of dimensions: {}' .format(ndims)) k = np.asarray(k, dtype=np.int64) + elif isinstance(k, dask_array_type): + if not np.issubdtype(k.dtype, np.integer): + raise TypeError('invalid indexer array, does not have ' + 'integer dtype: {!r}'.format(k)) + if ndim is None: + ndim = k.ndim + elif ndim != k.ndim: + ndims = [k.ndim for k in key + if isinstance(k, (np.ndarray) + dask_array_type)] + raise ValueError('invalid indexer key: ndarray arguments ' + 'have different numbers of dimensions: {}' + .format(ndims)) + k = da.array(k, dtype=np.int64) else: raise TypeError('unexpected indexer type for {}: {!r}' .format(type(self).name, k)) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
346157283 | https://github.com/pydata/xarray/issues/1240#issuecomment-346157283 | https://api.github.com/repos/pydata/xarray/issues/1240 | MDEyOklzc3VlQ29tbWVudDM0NjE1NzI4Mw== | ulijh 13190237 | 2017-11-21T20:52:49Z | 2017-11-21T20:52:49Z | CONTRIBUTOR | @jhamman - thanks, this should be usefull... |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Cannot use xarrays own times for indexing 204071440 | |
346037822 | https://github.com/pydata/xarray/issues/1240#issuecomment-346037822 | https://api.github.com/repos/pydata/xarray/issues/1240 | MDEyOklzc3VlQ29tbWVudDM0NjAzNzgyMg== | ulijh 13190237 | 2017-11-21T14:11:36Z | 2017-11-21T14:11:36Z | CONTRIBUTOR | Hi, this is still the case for version 0.10.0.
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Cannot use xarrays own times for indexing 204071440 | |
332122006 | https://github.com/pydata/xarray/issues/1591#issuecomment-332122006 | https://api.github.com/repos/pydata/xarray/issues/1591 | MDEyOklzc3VlQ29tbWVudDMzMjEyMjAwNg== | ulijh 13190237 | 2017-09-26T08:15:45Z | 2017-09-26T08:15:45Z | CONTRIBUTOR | Ok, thanks for opening the dask issue. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
indexing/groupby fails on array opened with chunks from netcdf 260279615 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 9