issue_comments
1 row where issue = 990194656 and user = 5635139 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Create benchmark for groupby · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
914511168 | https://github.com/pydata/xarray/pull/5772#issuecomment-914511168 | https://api.github.com/repos/pydata/xarray/issues/5772 | IC_kwDOAMm_X842glVA | max-sixty 5635139 | 2021-09-07T18:02:26Z | 2021-09-07T18:02:26Z | MEMBER | This looks great, thanks @Illviljan We may want to make the array much bigger, given the overhead. And (could be a TODO), parameterize the cardinality. Sorry to hear re asv. Does it install the environment successfully? That can take a while. But maybe not worth exploring more if it brings down the PC... 😬 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Create benchmark for groupby 990194656 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1