issue_comments
2 rows where issue = 935818279 and user = 2448579 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- quantile to_netcdf loading original data · 2 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
873148006 | https://github.com/pydata/xarray/issues/5567#issuecomment-873148006 | https://api.github.com/repos/pydata/xarray/issues/5567 | MDEyOklzc3VlQ29tbWVudDg3MzE0ODAwNg== | dcherian 2448579 | 2021-07-02T17:21:13Z | 2021-07-02T17:21:13Z | MEMBER | It has to compute the quantile first before overwriting |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
quantile to_netcdf loading original data 935818279 | |
873094334 | https://github.com/pydata/xarray/issues/5567#issuecomment-873094334 | https://api.github.com/repos/pydata/xarray/issues/5567 | MDEyOklzc3VlQ29tbWVudDg3MzA5NDMzNA== | dcherian 2448579 | 2021-07-02T15:48:53Z | 2021-07-02T15:48:53Z | MEMBER |
I suspect this is making your entire dataset one big chunk. I would chunk along |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
quantile to_netcdf loading original data 935818279 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1