issue_comments
2 rows where issue = 897689314 and user = 30388627 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Support `range` in `groupby_bins` · 2 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 851300846 | https://github.com/pydata/xarray/issues/5358#issuecomment-851300846 | https://api.github.com/repos/pydata/xarray/issues/5358 | MDEyOklzc3VlQ29tbWVudDg1MTMwMDg0Ng== | zxdawn 30388627 | 2021-05-31T08:12:22Z | 2021-05-31T08:12:22Z | NONE | @dcherian Has this method been improved in dask_groupby? Could you provide a simple example we can follow? I got lost in the dask_groupby documentation ... |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Support `range` in `groupby_bins` 897689314 | |
| 845924589 | https://github.com/pydata/xarray/issues/5358#issuecomment-845924589 | https://api.github.com/repos/pydata/xarray/issues/5358 | MDEyOklzc3VlQ29tbWVudDg0NTkyNDU4OQ== | zxdawn 30388627 | 2021-05-21T12:44:39Z | 2021-05-21T12:44:39Z | NONE | @dcherian Thanks! That's simple ;) However, the
So, let's check this shorter example: ``` from scipy.stats import binned_statistic import numpy as np import xarray as xr --- scipy method ---x = np.arange(10) values = x*5 statistics, _, _ = binned_statistic(x, values, statistic='min', bins=10, range=(0, 10)) --- xarray method ---x = xr.DataArray(x) values = xr.DataArray(values) bin_res = values.groupby_bins('dim_0', bins=np.linspace(0, 10, 10), right=False, include_lowest=True).min() print('scipy: \n', statistics) print('xarray: \n', bin_res) ``` Output: ``` scipy: [ 0. 5. 10. 15. 20. 25. 30. 35. 40. 45.] xarray: <xarray.DataArray (dim_0_bins: 9)> array([ 0, 10, 15, 20, 25, 30, 35, 40, 45]) Coordinates: * dim_0_bins (dim_0_bins) object [0.0, 1.111) ... [8.889, 10.0) ``` The scipy method has one more value ... SummaryThese produce the same results:
Output:
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Support `range` in `groupby_bins` 897689314 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1