issue_comments
48 rows where user = 30388627 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, reactions, created_at (date), updated_at (date)
user 1
- zxdawn · 48 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1163517013 | https://github.com/pydata/xarray/issues/6713#issuecomment-1163517013 | https://api.github.com/repos/pydata/xarray/issues/6713 | IC_kwDOAMm_X85FWdxV | zxdawn 30388627 | 2022-06-22T19:25:50Z | 2022-06-22T19:25:50Z | NONE | Thanks for the tip! It works well. Is it better to raise a warning or something else to remind users there're nan values in the mask? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Support `skipna` in `.where()` 1279891109 | |
1030874975 | https://github.com/pydata/xarray/issues/470#issuecomment-1030874975 | https://api.github.com/repos/pydata/xarray/issues/470 | IC_kwDOAMm_X849cedf | zxdawn 30388627 | 2022-02-06T17:15:46Z | 2022-02-06T17:15:46Z | NONE | @aidanheerdegen Thanks for the code. I suppose it's better to mention this method for DataArray in User Guide. @dcherian Should I create a PR for example like this? ``` air = xr.tutorial.open_dataset("air_temperature")['air'] air.isel(lon=10, lat=[19, 21, 22]).plot.line(x="time", marker='o',linewidth=0.,markersize=1) ``` |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
add scatter plot method to dataset 94787306 | |
1020614105 | https://github.com/pydata/xarray/issues/6188#issuecomment-1020614105 | https://api.github.com/repos/pydata/xarray/issues/6188 | IC_kwDOAMm_X8481VXZ | zxdawn 30388627 | 2022-01-24T22:27:48Z | 2022-01-24T22:27:48Z | NONE | @andersy005 Thanks a lot, I realize that it's mentioned in the comments of Guide. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
extrapolate not working for multi-dimentional data 1112925311 | |
1001690367 | https://github.com/pydata/xarray/issues/6085#issuecomment-1001690367 | https://api.github.com/repos/pydata/xarray/issues/6085 | IC_kwDOAMm_X847tJT_ | zxdawn 30388627 | 2021-12-27T18:25:45Z | 2021-12-27T18:25:45Z | NONE | Hi @TomNicholas, thanks and yes that's the same issue. Shall we close this duplicated one? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Missing linked coordinates of subgroup variable 1083806365 | |
998948479 | https://github.com/pydata/xarray/issues/6095#issuecomment-998948479 | https://api.github.com/repos/pydata/xarray/issues/6095 | IC_kwDOAMm_X847ir5_ | zxdawn 30388627 | 2021-12-21T17:06:32Z | 2021-12-21T17:06:32Z | NONE | Old figure:
New figure:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Issue on page /examples/multidimensional-coords.html 1086038682 | |
998910844 | https://github.com/pydata/xarray/issues/6091#issuecomment-998910844 | https://api.github.com/repos/pydata/xarray/issues/6091 | IC_kwDOAMm_X847iit8 | zxdawn 30388627 | 2021-12-21T16:15:14Z | 2021-12-21T16:15:14Z | NONE | Ha, thanks. It makes sense now. Shall we close this? |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
uint type data are read as wrong type (float64) 1085619598 | |
953852124 | https://github.com/pydata/xarray/issues/5901#issuecomment-953852124 | https://api.github.com/repos/pydata/xarray/issues/5901 | IC_kwDOAMm_X8442qDc | zxdawn 30388627 | 2021-10-28T13:35:59Z | 2021-10-28T13:51:24Z | NONE | @jklymak Thanks for the explanation.
Method1: Subset valueThis method works for the xarray tutorial data, but not for the TROPOMI polar-orbiting satellite data. ``` %matplotlib inline import xarray as xr import cartopy.crs as ccrs import matplotlib.pyplot as plt plt.figure(figsize=(14,6)) ax = plt.axes(projection=ccrs.PlateCarree()) ds = xr.open_dataset('./S5P_OFFL_L2__NO2____20190810T212136_20190810T230306_09456_01_010302_20190816T233944.nc', group='PRODUCT').isel(time=0) m = ax.pcolormesh(ds['longitude'], ds['latitude'], ds['nitrogendioxide_tropospheric_column'][:-1, :-1], # ds['nitrogendioxide_tropospheric_column'], # shading='auto', transform=ccrs.PlateCarree(), vmin=0, vmax=1e-4, cmap='Spectral_r') ``` (The TROPOMI example data is uploaded to Google Drive) Method2: boundsThis issue still exists with bounds data: ``` %matplotlib inline import numpy as np import xarray as xr import cartopy.crs as ccrs import matplotlib.pyplot as plt def prepare_geo(bounds_data): """Prepare lat/lon bounds for pcolormesh. lat/lon bounds are ordered in the following way:: 3----2 | | 0----1 Extend longitudes and latitudes with one element to support "pcolormesh":: (X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1]) +--------+ | C[i,j] | +--------+ (X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1]) """ # Create the left array left = np.vstack([bounds_data[:, :, 0], bounds_data[-1:, :, 3]]) # Create the right array right = np.vstack([bounds_data[:, -1:, 1], bounds_data[-1:, -1:, 2]]) # Stack horizontally dest = np.hstack([left, right]) # Convert to DataArray dest = xr.DataArray(dest, dims=('y_bounds', 'x_bounds'), attrs=bounds_data.attrs ) return dest ds = xr.open_dataset('./S5P_OFFL_L2__NO2_20190810T21213620190810T230306_09456_01_010302_20190816T233944.nc', group='PRODUCT').isel(time=0) ds_geo = xr.open_dataset('./S5P_OFFL_L2NO2____20190810T212136_20190810T230306_09456_01_010302_20190816T233944.nc', group='/PRODUCT/SUPPORT_DATA/GEOLOCATIONS').isel(time=0) lon_bounds = prepare_geo(ds_geo['longitude_bounds']) lat_bounds = prepare_geo(ds_geo['latitude_bounds']) plt.figure(figsize=(14,6)) ax = plt.axes(projection=ccrs.PlateCarree()) m = ax.pcolormesh(lon_bounds, lat_bounds, ds['nitrogendioxide_tropospheric_column'], # shading='auto', transform=ccrs.PlateCarree(), vmin=0, vmax=1e-4, cmap='Spectral_r') ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Spurious lines of the pcolormesh example 1037814301 | |
953350140 | https://github.com/pydata/xarray/issues/5901#issuecomment-953350140 | https://api.github.com/repos/pydata/xarray/issues/5901 | IC_kwDOAMm_X8440vf8 | zxdawn 30388627 | 2021-10-27T22:13:44Z | 2021-10-27T22:13:44Z | NONE | @QuLogic Ha, it looks well with the latest cartopy (0.20.1). Thanks a lot.
@TomNicholas So, is it better to keep this open until the doc is updated? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Spurious lines of the pcolormesh example 1037814301 | |
953298464 | https://github.com/pydata/xarray/issues/5901#issuecomment-953298464 | https://api.github.com/repos/pydata/xarray/issues/5901 | IC_kwDOAMm_X8440i4g | zxdawn 30388627 | 2021-10-27T20:47:18Z | 2021-10-27T21:00:46Z | NONE | { "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
Spurious lines of the pcolormesh example 1037814301 | ||
953295655 | https://github.com/pydata/xarray/issues/5901#issuecomment-953295655 | https://api.github.com/repos/pydata/xarray/issues/5901 | IC_kwDOAMm_X8440iMn | zxdawn 30388627 | 2021-10-27T20:42:58Z | 2021-10-27T20:42:58Z | NONE | BTW, the question on StackOverflow, which was raised by @gerritholl a long time ago, looks similar. I'm not sure whether this is the cartopy issue, CC @QuLogic, and @greglucas. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Spurious lines of the pcolormesh example 1037814301 | |
855206219 | https://github.com/pydata/xarray/issues/5439#issuecomment-855206219 | https://api.github.com/repos/pydata/xarray/issues/5439 | MDEyOklzc3VlQ29tbWVudDg1NTIwNjIxOQ== | zxdawn 30388627 | 2021-06-05T08:34:52Z | 2021-06-05T08:37:11Z | NONE | Sorry for this issue. This actually caused by the missing args like Anyway, this one works well:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Set `allow_rechunk=True` still raise different lengths error 912149228 | |
851300846 | https://github.com/pydata/xarray/issues/5358#issuecomment-851300846 | https://api.github.com/repos/pydata/xarray/issues/5358 | MDEyOklzc3VlQ29tbWVudDg1MTMwMDg0Ng== | zxdawn 30388627 | 2021-05-31T08:12:22Z | 2021-05-31T08:12:22Z | NONE | @dcherian Has this method been improved in dask_groupby? Could you provide a simple example we can follow? I got lost in the dask_groupby documentation ... |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Support `range` in `groupby_bins` 897689314 | |
845924589 | https://github.com/pydata/xarray/issues/5358#issuecomment-845924589 | https://api.github.com/repos/pydata/xarray/issues/5358 | MDEyOklzc3VlQ29tbWVudDg0NTkyNDU4OQ== | zxdawn 30388627 | 2021-05-21T12:44:39Z | 2021-05-21T12:44:39Z | NONE | @dcherian Thanks! That's simple ;) However, the
So, let's check this shorter example: ``` from scipy.stats import binned_statistic import numpy as np import xarray as xr --- scipy method ---x = np.arange(10) values = x*5 statistics, _, _ = binned_statistic(x, values, statistic='min', bins=10, range=(0, 10)) --- xarray method ---x = xr.DataArray(x) values = xr.DataArray(values) bin_res = values.groupby_bins('dim_0', bins=np.linspace(0, 10, 10), right=False, include_lowest=True).min() print('scipy: \n', statistics) print('xarray: \n', bin_res) ``` Output: ``` scipy: [ 0. 5. 10. 15. 20. 25. 30. 35. 40. 45.] xarray: <xarray.DataArray (dim_0_bins: 9)> array([ 0, 10, 15, 20, 25, 30, 35, 40, 45]) Coordinates: * dim_0_bins (dim_0_bins) object [0.0, 1.111) ... [8.889, 10.0) ``` The scipy method has one more value ... SummaryThese produce the same results:
Output:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Support `range` in `groupby_bins` 897689314 | |
788732242 | https://github.com/pydata/xarray/issues/4476#issuecomment-788732242 | https://api.github.com/repos/pydata/xarray/issues/4476 | MDEyOklzc3VlQ29tbWVudDc4ODczMjI0Mg== | zxdawn 30388627 | 2021-03-02T08:42:51Z | 2021-03-02T08:42:51Z | NONE | @markusritschel I tested v0.17.0 and it doesn't work.
Error: |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Reimplement GroupBy.argmax 712217045 | |
707744782 | https://github.com/pydata/xarray/issues/3957#issuecomment-707744782 | https://api.github.com/repos/pydata/xarray/issues/3957 | MDEyOklzc3VlQ29tbWVudDcwNzc0NDc4Mg== | zxdawn 30388627 | 2020-10-13T13:38:34Z | 2020-10-13T13:38:34Z | NONE | @JavierRuano I find the simpler solution from a similar question in stack overflow.
Complete example``` import xarray as xr import numpy as np x = 4 y = 2 z = 4 data = np.arange(xyz).reshape(z, y, x) 3d array with coordscld_1 = xr.DataArray(data, dims=['z', 'y', 'x'], coords={'z': np.arange(z)}) 2d array without coordscld_2 = xr.DataArray(np.arange(xy).reshape(y, x)1.5+1, dims=['y', 'x']) expand 2d to 3dcld_2 = cld_2.expand_dims(z=[4]) concatcld = xr.concat([cld_1, cld_2], dim='z') paired arraypair = cld.copy(data=np.arange(xy(z+1)).reshape(z+1, y, x)) sort_pair = np.take_along_axis(pair.values, cld.argsort(axis=0), axis=0) print(cld) print(pair) print(sort_pair) ``` Output: ``` <xarray.DataArray (z: 5, y: 2, x: 4)> array([[[ 0. , 1. , 2. , 3. ], [ 4. , 5. , 6. , 7. ]],
Coordinates: * z (z) int64 0 1 2 3 4 Dimensions without coordinates: y, x <xarray.DataArray (z: 5, y: 2, x: 4)> array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7]],
Coordinates: * z (z) int64 0 1 2 3 4 Dimensions without coordinates: y, x [[[ 0 1 2 3] [ 4 5 6 7]] [[32 33 34 35] [36 37 38 39]] [[ 8 9 10 11] [12 13 14 15]] [[16 17 18 19] [20 21 22 23]] [[24 25 26 27] ``` Note, I have to use
|
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 | |
688560368 | https://github.com/pydata/xarray/issues/4410#issuecomment-688560368 | https://api.github.com/repos/pydata/xarray/issues/4410 | MDEyOklzc3VlQ29tbWVudDY4ODU2MDM2OA== | zxdawn 30388627 | 2020-09-08T00:58:44Z | 2020-09-08T00:58:44Z | NONE | Thanks, it works well. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
interpolate_na doesn't support extrapolation 694874737 | |
621793960 | https://github.com/pydata/xarray/issues/4016#issuecomment-621793960 | https://api.github.com/repos/pydata/xarray/issues/4016 | MDEyOklzc3VlQ29tbWVudDYyMTc5Mzk2MA== | zxdawn 30388627 | 2020-04-30T12:12:11Z | 2020-04-30T12:12:11Z | NONE | @keewis Thanks! I will try to apply this method and check the results. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Concatenate DataArrays on one dim when another dim has difference sizes 609108666 | |
621680403 | https://github.com/pydata/xarray/issues/4016#issuecomment-621680403 | https://api.github.com/repos/pydata/xarray/issues/4016 | MDEyOklzc3VlQ29tbWVudDYyMTY4MDQwMw== | zxdawn 30388627 | 2020-04-30T08:03:44Z | 2020-04-30T08:03:44Z | NONE | @dcherian Sorry. I made a mistake in the expected result. It should be
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Concatenate DataArrays on one dim when another dim has difference sizes 609108666 | |
621300738 | https://github.com/pydata/xarray/issues/4016#issuecomment-621300738 | https://api.github.com/repos/pydata/xarray/issues/4016 | MDEyOklzc3VlQ29tbWVudDYyMTMwMDczOA== | zxdawn 30388627 | 2020-04-29T15:51:52Z | 2020-04-29T15:51:52Z | NONE | @JavierRuano The time indexes are same in my real case. Maybe, I have to merge these data if I can't find the solution. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Concatenate DataArrays on one dim when another dim has difference sizes 609108666 | |
612561659 | https://github.com/pydata/xarray/pull/3924#issuecomment-612561659 | https://api.github.com/repos/pydata/xarray/issues/3924 | MDEyOklzc3VlQ29tbWVudDYxMjU2MTY1OQ== | zxdawn 30388627 | 2020-04-12T04:14:45Z | 2020-04-12T04:14:45Z | NONE | @dcherian Oh, thanks! After test_interp.py::test_nans[True] SKIPPED [ 50%] test_interp.py::test_nans[False] PASSED [100%] ================================================ warnings summary ================================================= xarray/tests/test_interp.py::test_nans[False] xarray/tests/test_interp.py::test_nans[False] /yin_raid/xin/miniconda3/envs/xarray_dev/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject return f(args, *kwds) -- Docs: https://docs.pytest.org/en/latest/warnings.html ==================================== 1 passed, 1 skipped, 2 warnings in 0.88s ===================================== ``` I will update the test and pull it soon. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Coordinates passed to interp have nan values 591643901 | |
612548656 | https://github.com/pydata/xarray/pull/3924#issuecomment-612548656 | https://api.github.com/repos/pydata/xarray/issues/3924 | MDEyOklzc3VlQ29tbWVudDYxMjU0ODY1Ng== | zxdawn 30388627 | 2020-04-12T01:38:32Z | 2020-04-12T01:38:32Z | NONE | It's my first time to write test_interp.py::test_nans[True] SKIPPED [ 50%] test_interp.py::test_nans[False] SKIPPED [100%] ==================================================== 2 skipped in 0.50s ==================================================== ``` How to make the test actually run? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Coordinates passed to interp have nan values 591643901 | |
611543489 | https://github.com/pydata/xarray/issues/2283#issuecomment-611543489 | https://api.github.com/repos/pydata/xarray/issues/2283 | MDEyOklzc3VlQ29tbWVudDYxMTU0MzQ4OQ== | zxdawn 30388627 | 2020-04-09T13:59:34Z | 2020-04-09T13:59:34Z | NONE | Any update? This issue could result in errors for many functions of xarray, like |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Exact alignment should allow missing dimension coordinates 340733448 | |
611483929 | https://github.com/pydata/xarray/issues/3957#issuecomment-611483929 | https://api.github.com/repos/pydata/xarray/issues/3957 | MDEyOklzc3VlQ29tbWVudDYxMTQ4MzkyOQ== | zxdawn 30388627 | 2020-04-09T11:43:51Z | 2020-04-09T11:43:51Z | NONE | I need to use |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 | |
611348892 | https://github.com/pydata/xarray/issues/3957#issuecomment-611348892 | https://api.github.com/repos/pydata/xarray/issues/3957 | MDEyOklzc3VlQ29tbWVudDYxMTM0ODg5Mg== | zxdawn 30388627 | 2020-04-09T06:13:07Z | 2020-04-09T06:13:07Z | NONE | @JavierRuano When the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 | |
611299453 | https://github.com/pydata/xarray/issues/3957#issuecomment-611299453 | https://api.github.com/repos/pydata/xarray/issues/3957 | MDEyOklzc3VlQ29tbWVudDYxMTI5OTQ1Mw== | zxdawn 30388627 | 2020-04-09T02:54:30Z | 2020-04-09T02:54:30Z | NONE | @JavierRuano Nice suggestion! I combine them to df = ds.to_dataframe() new_ds = df.sort_values(by='cld').to_xarray().transpose() ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 | |
611291129 | https://github.com/pydata/xarray/issues/3957#issuecomment-611291129 | https://api.github.com/repos/pydata/xarray/issues/3957 | MDEyOklzc3VlQ29tbWVudDYxMTI5MTEyOQ== | zxdawn 30388627 | 2020-04-09T02:22:33Z | 2020-04-09T02:22:33Z | NONE | @JavierRuano Thank you very much. This example is a special case. If the order of |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 | |
610808232 | https://github.com/pydata/xarray/issues/3955#issuecomment-610808232 | https://api.github.com/repos/pydata/xarray/issues/3955 | MDEyOklzc3VlQ29tbWVudDYxMDgwODIzMg== | zxdawn 30388627 | 2020-04-08T07:51:41Z | 2020-04-08T07:51:41Z | NONE | @kmuehlbauer Thanks, Nice trick! It works well for this situation. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Masking and preserving int type 596352097 | |
610707081 | https://github.com/pydata/xarray/issues/3954#issuecomment-610707081 | https://api.github.com/repos/pydata/xarray/issues/3954 | MDEyOklzc3VlQ29tbWVudDYxMDcwNzA4MQ== | zxdawn 30388627 | 2020-04-08T01:52:30Z | 2020-04-08T01:52:30Z | NONE | Thanks, @fujiisoup . @dcherian decided to improve the error message later. So, I will leave this open. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Concatenate 3D array with 2D array 596249070 | |
610420611 | https://github.com/pydata/xarray/issues/3949#issuecomment-610420611 | https://api.github.com/repos/pydata/xarray/issues/3949 | MDEyOklzc3VlQ29tbWVudDYxMDQyMDYxMQ== | zxdawn 30388627 | 2020-04-07T14:30:12Z | 2020-04-07T14:30:12Z | NONE | @johnomotani Thanks, it works. Sorry for this simple question ... |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Index 3D array with index of last axis stored in 2D array 595900209 | |
610142267 | https://github.com/pydata/xarray/issues/3941#issuecomment-610142267 | https://api.github.com/repos/pydata/xarray/issues/3941 | MDEyOklzc3VlQ29tbWVudDYxMDE0MjI2Nw== | zxdawn 30388627 | 2020-04-07T02:45:26Z | 2020-04-07T02:45:26Z | NONE | @dcherian Sorry for the misunderstanding. I tried again for the 3d array, it works well ;) ``` import xarray as xr import numpy as np x = 2 y = 4 z = 3 data = np.arange(xyz).reshape(z, x, y) input arraya = xr.DataArray(data, dims=['z', 'y', 'x']) start_index arraysindex = xr.DataArray(np.full_like(a[0, ...], 0), dims=['y', 'x']) end_index arrayeindex = xr.DataArray(np.full_like(a[0, ...], 1), dims=['y', 'x']) zindex = a.z.copy(data=np.arange(a.sizes["z"])) sub_z = (zindex >= sindex) & (zindex <= eindex) sum_a = a.where(sub_z).sum('z', keepdims=True) print(a) print(sum_a) ``` ``` <xarray.DataArray (z: 3, y: 2, x: 4)> array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7]],
Dimensions without coordinates: z, y, x <xarray.DataArray (z: 1, y: 2, x: 4)> array([[[ 8., 10., 12., 14.], [16., 18., 20., 22.]]]) Dimensions without coordinates: z, y, x ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sum based on start_index and end_index array 594900245 | |
609850841 | https://github.com/pydata/xarray/issues/3941#issuecomment-609850841 | https://api.github.com/repos/pydata/xarray/issues/3941 | MDEyOklzc3VlQ29tbWVudDYwOTg1MDg0MQ== | zxdawn 30388627 | 2020-04-06T15:04:23Z | 2020-04-06T15:04:23Z | NONE | @dcherian Excellent solution! If we upgrade this to 3d array and sum by ``` import xarray as xr import numpy as np x = 2 y = 2 z = 3 data = np.arange(xyz).reshape(z, y, x) input arraya = xr.DataArray(data, dims=['z', 'y', 'x']) start_index arraysindex = xr.DataArray(np.full_like(a[0, ...], 0), dims=['y', 'x']) end_index arrayeindex = xr.DataArray(np.full_like(a[0, ...], 1), dims=['y', 'x']) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sum based on start_index and end_index array 594900245 | |
609728948 | https://github.com/pydata/xarray/issues/3941#issuecomment-609728948 | https://api.github.com/repos/pydata/xarray/issues/3941 | MDEyOklzc3VlQ29tbWVudDYwOTcyODk0OA== | zxdawn 30388627 | 2020-04-06T11:09:10Z | 2020-04-06T11:09:10Z | NONE | Solution (Boolean) ``` stack indexesindex_list = np.column_stack((sindex, eindex)) all false arrayboolean_array = np.zeros(a.shape, dtype=bool) iterate and assign truefor row in range(len(index_list)): boolean_array[row, np.arange(index_list[row][0], index_list[row][1]+1)] = True sum_a = a.where(boolean_array).sum(dim='y') ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sum based on start_index and end_index array 594900245 | |
609528106 | https://github.com/pydata/xarray/pull/3924#issuecomment-609528106 | https://api.github.com/repos/pydata/xarray/issues/3924 | MDEyOklzc3VlQ29tbWVudDYwOTUyODEwNg== | zxdawn 30388627 | 2020-04-06T01:57:54Z | 2020-04-06T02:03:41Z | NONE | @spencerkclark Maybe converting the datetime into number? BTW, Why not forcing numpy >= 1.18.1? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Coordinates passed to interp have nan values 591643901 | |
609040104 | https://github.com/pydata/xarray/issues/3931#issuecomment-609040104 | https://api.github.com/repos/pydata/xarray/issues/3931 | MDEyOklzc3VlQ29tbWVudDYwOTA0MDEwNA== | zxdawn 30388627 | 2020-04-04T14:51:32Z | 2020-04-04T14:51:32Z | NONE | @mathause Thanks! Shall we close this issue? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Interpolate 3D array by another 3D array 593770078 | |
609038408 | https://github.com/pydata/xarray/issues/3931#issuecomment-609038408 | https://api.github.com/repos/pydata/xarray/issues/3931 | MDEyOklzc3VlQ29tbWVudDYwOTAzODQwOA== | zxdawn 30388627 | 2020-04-04T14:39:27Z | 2020-04-04T14:39:27Z | NONE | @mathause
For For the one without |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Interpolate 3D array by another 3D array 593770078 | |
609031899 | https://github.com/pydata/xarray/issues/3931#issuecomment-609031899 | https://api.github.com/repos/pydata/xarray/issues/3931 | MDEyOklzc3VlQ29tbWVudDYwOTAzMTg5OQ== | zxdawn 30388627 | 2020-04-04T13:52:28Z | 2020-04-04T13:52:28Z | NONE | I tested again with a subset of my data:
Error without Error with Details of DataArray:## subset_no2 <xarray.DataArray 'no2' (bottom_top: 39, y: 2)> array([[1.24115179e-08, 6.27056852e-08], [6.80964068e-09, 4.52237474e-08], [4.69188675e-09, 2.54678234e-08], [3.53337218e-09, 1.65583661e-08], [2.94962740e-09, 1.59282658e-08], [2.59346789e-09, 1.18680378e-08], [2.20434986e-09, 6.98941734e-09], [1.70838029e-09, 4.09148835e-09], [1.08785037e-09, 2.11626991e-09], [5.40526199e-10, 7.51218841e-10], [3.40114302e-10, 2.83674335e-10], [2.25290863e-10, 2.03432518e-10], [1.88406983e-10, 1.77420169e-10], [1.64951814e-10, 1.58818626e-10], [1.32610296e-10, 1.46572637e-10], [1.07792915e-10, 1.38499777e-10], [9.41847784e-11, 9.92248621e-11], [8.43529921e-11, 7.64672477e-11], [8.50483741e-11, 6.09330335e-11], [9.88087134e-11, 7.22940627e-11], [1.12557403e-10, 8.70426616e-11], [1.26527656e-10, 1.12620613e-10], [1.18148820e-10, 1.52514333e-10], [1.14522875e-10, 2.64312333e-10], [1.08898568e-10, 4.51579313e-10], [7.86399974e-11, 4.47694522e-10], [4.73609487e-11, 3.14831089e-10], [4.00449127e-11, 2.01112967e-10], [6.23887273e-11, 1.39728893e-10], [8.12143663e-11, 1.09831490e-10], [7.69666632e-11, 8.47591237e-11], [6.62737034e-11, 6.67154422e-11], [7.04659314e-11, 6.81855965e-11], [8.89134542e-11, 8.27209545e-11], [1.14639174e-10, 1.24251589e-10], [1.39306685e-10, 1.77576530e-10], [1.87629863e-10, 2.37522657e-10], [2.79661049e-10, 3.35704699e-10], [3.84697368e-10, 4.34654679e-10]]) Coordinates: XTIME datetime64[ns] 2019-07-25T05:40:00 lon (y) float32 118.88653 118.87 lat (y) float32 31.982988 32.046158 Dimensions without coordinates: bottom_top, y ## subset_p <xarray.DataArray (bottom_top: 39, y: 2)> array([[999.21183185, 994.82226662], [992.45297279, 988.09617577], [983.90273668, 979.58676312], [973.14155175, 968.88817802], [959.73882983, 955.55701426], [943.2266928 , 939.13366778], [923.14843372, 919.16002955], [899.1301363 , 895.27449236], [870.93359135, 867.24191033], [838.54076775, 835.04477768], [802.19838977, 798.92594777], [762.42839118, 759.41125882], [720.01658748, 717.276933 ], [675.82211003, 673.37656836], [630.36177484, 628.21954216], [583.89080793, 582.06254511], [536.71087969, 535.2179208 ], [489.22426113, 488.04157991], [442.01029323, 441.13686917], [397.48824388, 396.89283447], [357.43902179, 357.05545246], [321.40740822, 321.16476787], [288.98307787, 288.8348624 ], [259.79715824, 259.73242936], [233.52221354, 233.53890789], [209.88217625, 209.9574665 ], [188.6518575 , 188.74680403], [169.61437427, 169.67585118], [152.5459371 , 152.54166587], [137.21135599, 137.1660674 ], [123.42544258, 123.36597354], [111.02212197, 110.9501009 ], [ 99.84275351, 99.7735498 ], [ 89.78023477, 89.72146162], [ 80.73068588, 80.68572074], [ 72.598215 , 72.56306462], [ 65.28822276, 65.25848141], [ 58.71494192, 58.69333156], [ 52.80223723, 52.79301171]]) Coordinates: XTIME datetime64[ns] 2019-07-25T05:40:00 lon (y) float32 118.88653 118.87 lat (y) float32 31.982988 32.046158 Dimensions without coordinates: bottom_top, y ## subset_interp <xarray.DataArray (bottom_top: 25, y: 2)> dask.array<getitem, shape=(25, 2), dtype=float32, chunksize=(25, 2), chunktype=numpy.ndarray> Coordinates: * bottom_top (bottom_top) int32 0 1 2 3 4 5 6 7 8 ... 17 18 19 20 21 22 23 24 vertices int32 0 crs object +proj=latlong +datum=WGS84 +ellps=WGS84 +type=crs Dimensions without coordinates: y Attributes: name: p resolution: None calibration: None polarization: None level: None modifiers: () units: hPa |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Interpolate 3D array by another 3D array 593770078 | |
609027716 | https://github.com/pydata/xarray/issues/3931#issuecomment-609027716 | https://api.github.com/repos/pydata/xarray/issues/3931 | MDEyOklzc3VlQ29tbWVudDYwOTAyNzcxNg== | zxdawn 30388627 | 2020-04-04T13:22:31Z | 2020-04-04T13:23:39Z | NONE | @dcherian If Here's the information of BTW, I have |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Interpolate 3D array by another 3D array 593770078 | |
609023296 | https://github.com/pydata/xarray/issues/3931#issuecomment-609023296 | https://api.github.com/repos/pydata/xarray/issues/3931 | MDEyOklzc3VlQ29tbWVudDYwOTAyMzI5Ng== | zxdawn 30388627 | 2020-04-04T12:45:03Z | 2020-04-04T12:50:12Z | NONE | @mathause Thanks! It works well. Here's the solution: Code``` def interp1d_np(data, x, xi): from scipy import interpolate # return np.interp(xi, x, data) f = interpolate.interp1d(x, data, fill_value='extrapolate') return f(xi) interped = xr.apply_ufunc( interp1d_np, # first the function bottom_up, # now arguments in the order expected by 'interp1_np' pressure.values, # as above interp_p.values, # as above input_core_dims=[["z"], ["z"], ["new_z"]], # list with one entry per arg output_core_dims=[["new_z"]], # returned data has one dimension exclude_dims=set(("z",)), # dimensions allowed to change size. Must be a set! vectorize=True, # loop over non-core dims ) interped = interped.rename({"new_z": "z"}) print(np.testing.assert_allclose(output.values, interped.values)) ``` Result:
However, when I apply it to my real data, I got some errors: Code``` def interp1d_np(data, x, xi): from scipy import interpolate f = interpolate.interp1d(x, data, fill_value='extrapolate') return f(xi)
``` Error:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Interpolate 3D array by another 3D array 593770078 | |
608106094 | https://github.com/pydata/xarray/pull/3924#issuecomment-608106094 | https://api.github.com/repos/pydata/xarray/issues/3924 | MDEyOklzc3VlQ29tbWVudDYwODEwNjA5NA== | zxdawn 30388627 | 2020-04-02T21:43:41Z | 2020-04-02T21:43:41Z | NONE | Hi @max-sixty, thanks. If this looks well, I'm glad to add the test for it. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Coordinates passed to interp have nan values 591643901 | |
542599383 | https://github.com/pydata/xarray/issues/3407#issuecomment-542599383 | https://api.github.com/repos/pydata/xarray/issues/3407 | MDEyOklzc3VlQ29tbWVudDU0MjU5OTM4Mw== | zxdawn 30388627 | 2019-10-16T08:55:01Z | 2019-10-16T08:55:01Z | NONE | @DocOtak Thank you for your explanation! It works well now :) |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Save 'S1' array without the char_dim_name dimension 507658070 | |
529164506 | https://github.com/pydata/xarray/issues/3290#issuecomment-529164506 | https://api.github.com/repos/pydata/xarray/issues/3290 | MDEyOklzc3VlQ29tbWVudDUyOTE2NDUwNg== | zxdawn 30388627 | 2019-09-08T02:52:56Z | 2019-09-08T02:52:56Z | NONE | @shoyer Thanks. It's not datetime64 arrays, this is the result of I use |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Using min() with skipna=True 490593787 | |
529163827 | https://github.com/pydata/xarray/issues/3290#issuecomment-529163827 | https://api.github.com/repos/pydata/xarray/issues/3290 | MDEyOklzc3VlQ29tbWVudDUyOTE2MzgyNw== | zxdawn 30388627 | 2019-09-08T02:39:30Z | 2019-09-08T02:39:30Z | NONE | @keewis I tried to using |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Using min() with skipna=True 490593787 | |
529163060 | https://github.com/pydata/xarray/issues/3290#issuecomment-529163060 | https://api.github.com/repos/pydata/xarray/issues/3290 | MDEyOklzc3VlQ29tbWVudDUyOTE2MzA2MA== | zxdawn 30388627 | 2019-09-08T02:22:01Z | 2019-09-08T02:22:01Z | NONE | @shoyer Thank. It works now. But, I get another question.
This is the result of |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Using min() with skipna=True 490593787 | |
529091168 | https://github.com/pydata/xarray/issues/3290#issuecomment-529091168 | https://api.github.com/repos/pydata/xarray/issues/3290 | MDEyOklzc3VlQ29tbWVudDUyOTA5MTE2OA== | zxdawn 30388627 | 2019-09-07T09:33:32Z | 2019-09-07T09:33:32Z | NONE | @max-sixty Actually, I'm using numpy = 1.13.1 and I need skipna= True. Don't understand the error it shows. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Using min() with skipna=True 490593787 | |
527422655 | https://github.com/pydata/xarray/issues/3275#issuecomment-527422655 | https://api.github.com/repos/pydata/xarray/issues/3275 | MDEyOklzc3VlQ29tbWVudDUyNzQyMjY1NQ== | zxdawn 30388627 | 2019-09-03T11:42:00Z | 2019-09-03T11:42:00Z | NONE | @dcherian Can't find how to do that by |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Change the label size and tick label size of colorbar 488190500 | |
527150960 | https://github.com/pydata/xarray/issues/3275#issuecomment-527150960 | https://api.github.com/repos/pydata/xarray/issues/3275 | MDEyOklzc3VlQ29tbWVudDUyNzE1MDk2MA== | zxdawn 30388627 | 2019-09-02T13:36:18Z | 2019-09-02T13:36:18Z | NONE | @dcherian Thanks! Figure out now: ``` import xarray as xr import matplotlib.pyplot as plt airtemps = xr.tutorial.open_dataset('air_temperature') air = airtemps.air - 273.15 air2d = air.isel(time=500) im = air2d.plot.pcolormesh(add_colorbar=False)
cb = plt.colorbar(im, orientation="horizontal", pad=0.15)
cb.set_label(label='Temperature ($^{\circ}$C)', size='large', weight='bold')
cb.ax.tick_params(labelsize='large')
```
|
{ "total_count": 6, "+1": 6, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Change the label size and tick label size of colorbar 488190500 | |
450458650 | https://github.com/pydata/xarray/issues/2636#issuecomment-450458650 | https://api.github.com/repos/pydata/xarray/issues/2636 | MDEyOklzc3VlQ29tbWVudDQ1MDQ1ODY1MA== | zxdawn 30388627 | 2018-12-29T02:38:00Z | 2018-12-29T02:39:41Z | NONE | @dcherian It works by with xr.open_dataset('ds1.nc') as f:
print (f.time.attrs)
OrderedDict() ``` What's the difference between |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset change the attributes of Coordinates 394625579 | |
450456616 | https://github.com/pydata/xarray/issues/2636#issuecomment-450456616 | https://api.github.com/repos/pydata/xarray/issues/2636 | MDEyOklzc3VlQ29tbWVudDQ1MDQ1NjYxNg== | zxdawn 30388627 | 2018-12-29T02:17:49Z | 2018-12-29T02:17:49Z | NONE | @xylar Thanks! I just found another question similar to this one. I've tried some operations:
It works fine: ``` <xarray.DataArray 'temperature' (x: 2, y: 2, time: 6)> array([[[-0.022611, -1.428088, -0.655508, 0.977389, -0.428088, 0.344492], [ 0.430102, 0.996973, -0.882054, 1.430102, 1.996973, 0.117946]],
Coordinates: lon (x, y) float64 ... lat (x, y) float64 ... * time (time) datetime64[ns] 2015-01-05T04:00:00 2015-01-05T05:00:00 ... Dimensions without coordinates: x, y <xarray.Dataset> Dimensions: (x: 2, y: 2) Coordinates: lon (x, y) float64 ... lat (x, y) float64 ... Dimensions without coordinates: x, y Data variables: temperature (x, y) float64 -0.2021 0.6817 0.307 -0.4446 <xarray.DataArray 'temperature' (x: 2, y: 2)> array([[-0.022611, 0.430102], [ 0.157233, -0.075826]]) Coordinates: lon (x, y) float64 ... lat (x, y) float64 ... time datetime64[ns] 2015-01-05T04:00:00 Dimensions without coordinates: x, y ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset change the attributes of Coordinates 394625579 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 24