issue_comments
4 rows where issue = 831148018 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- output_dtypes needs to be a tuple, not a sequence · 4 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
822729940 | https://github.com/pydata/xarray/issues/5034#issuecomment-822729940 | https://api.github.com/repos/pydata/xarray/issues/5034 | MDEyOklzc3VlQ29tbWVudDgyMjcyOTk0MA== | LunarLanding 4441338 | 2021-04-19T19:33:14Z | 2021-04-19T19:33:14Z | NONE | @dcherian I tried to reproduce, with this minimal example I couldn't, so I'm closing the issue. ```python import xarray as xr import numpy as np n0 = 10 n1 = 3 x1 = xr.DataArray(np.empty((n0,n1),dtype=np.float64),dims=('dim0','dim1')).chunk({'dim0':2}) x2 = xr.DataArray(np.empty(n0,dtype=bool),dims=('dim0',)).chunk({'dim0':2}) n2 = 10 def f(x1,x2): return np.empty(n2,dtype=x1.dtype),np.empty(n2,dtype=np.min_scalar_type(n2)) m,w = xr.apply_ufunc( f, x1,x2, input_core_dims=[('dim0','dim1'),('dim0',)], output_core_dims=[('dim2',),('dim2',)], vectorize=True, dask='parallelized', dask_gufunc_kwargs={ 'output_sizes':{'dim2':n2}, 'allow_rechunk':True, 'meta':(np.empty((M,),dtype=p.dtype),np.empty((M,),dtype=np.min_scalar_type(M)))'output_dtypes':[p.dtype,np.min_scalar_type(M)],
output_dtypes=(x.dtype,np.min_scalar_type(ny)) # works)
m.compute(),w.compute()
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
output_dtypes needs to be a tuple, not a sequence 831148018 | |
822130302 | https://github.com/pydata/xarray/issues/5034#issuecomment-822130302 | https://api.github.com/repos/pydata/xarray/issues/5034 | MDEyOklzc3VlQ29tbWVudDgyMjEzMDMwMg== | dcherian 2448579 | 2021-04-19T02:49:32Z | 2021-04-19T02:49:32Z | MEMBER | @LunarLanding can you add a minimal example illustrating the problem? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
output_dtypes needs to be a tuple, not a sequence 831148018 | |
798999639 | https://github.com/pydata/xarray/issues/5034#issuecomment-798999639 | https://api.github.com/repos/pydata/xarray/issues/5034 | MDEyOklzc3VlQ29tbWVudDc5ODk5OTYzOQ== | mathause 10194086 | 2021-03-14T23:23:05Z | 2021-03-14T23:23:05Z | MEMBER | Hmm would be good to get a MVCE - may be a dask problem. Dask allows a
Unfortunately |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
output_dtypes needs to be a tuple, not a sequence 831148018 | |
798973169 | https://github.com/pydata/xarray/issues/5034#issuecomment-798973169 | https://api.github.com/repos/pydata/xarray/issues/5034 | MDEyOklzc3VlQ29tbWVudDc5ODk3MzE2OQ== | max-sixty 5635139 | 2021-03-14T20:22:04Z | 2021-03-14T20:22:04Z | MEMBER | Thanks @LunarLanding . Does anyone who knows this better have a view on whether we should accept a list? In lieu of that, we can change the type definition. @LunarLanding would you be up for a small PR? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
output_dtypes needs to be a tuple, not a sequence 831148018 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 4