issue_comments: 822729940
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/5034#issuecomment-822729940 | https://api.github.com/repos/pydata/xarray/issues/5034 | 822729940 | MDEyOklzc3VlQ29tbWVudDgyMjcyOTk0MA== | 4441338 | 2021-04-19T19:33:14Z | 2021-04-19T19:33:14Z | NONE | @dcherian I tried to reproduce, with this minimal example I couldn't, so I'm closing the issue. ```python import xarray as xr import numpy as np n0 = 10 n1 = 3 x1 = xr.DataArray(np.empty((n0,n1),dtype=np.float64),dims=('dim0','dim1')).chunk({'dim0':2}) x2 = xr.DataArray(np.empty(n0,dtype=bool),dims=('dim0',)).chunk({'dim0':2}) n2 = 10 def f(x1,x2): return np.empty(n2,dtype=x1.dtype),np.empty(n2,dtype=np.min_scalar_type(n2)) m,w = xr.apply_ufunc( f, x1,x2, input_core_dims=[('dim0','dim1'),('dim0',)], output_core_dims=[('dim2',),('dim2',)], vectorize=True, dask='parallelized', dask_gufunc_kwargs={ 'output_sizes':{'dim2':n2}, 'allow_rechunk':True, 'meta':(np.empty((M,),dtype=p.dtype),np.empty((M,),dtype=np.min_scalar_type(M)))'output_dtypes':[p.dtype,np.min_scalar_type(M)],
output_dtypes=(x.dtype,np.min_scalar_type(ny)) # works)
m.compute(),w.compute()
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
831148018 |