issue_comments
5 rows where issue = 753517739 and user = 2448579 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- Non lazy behavior for weighted average when using resampled data · 5 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
736713989 | https://github.com/pydata/xarray/issues/4625#issuecomment-736713989 | https://api.github.com/repos/pydata/xarray/issues/4625 | MDEyOklzc3VlQ29tbWVudDczNjcxMzk4OQ== | dcherian 2448579 | 2020-12-01T17:47:44Z | 2020-12-01T17:47:44Z | MEMBER | Yes something like what you have with
BUT something is wrong with my explanation above. The error is only triggered when the number of timesteps is not divisble by the resampling frequency. If you set |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Non lazy behavior for weighted average when using resampled data 753517739 | |
736221445 | https://github.com/pydata/xarray/issues/4625#issuecomment-736221445 | https://api.github.com/repos/pydata/xarray/issues/4625 | MDEyOklzc3VlQ29tbWVudDczNjIyMTQ0NQ== | dcherian 2448579 | 2020-12-01T05:08:12Z | 2020-12-01T05:08:12Z | MEMBER | Untested but specifying |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Non lazy behavior for weighted average when using resampled data 753517739 | |
736195480 | https://github.com/pydata/xarray/issues/4625#issuecomment-736195480 | https://api.github.com/repos/pydata/xarray/issues/4625 | MDEyOklzc3VlQ29tbWVudDczNjE5NTQ4MA== | dcherian 2448579 | 2020-12-01T03:34:29Z | 2020-12-01T03:34:29Z | MEMBER | PRs are always welcome! |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 1, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Non lazy behavior for weighted average when using resampled data 753517739 | |
736131299 | https://github.com/pydata/xarray/issues/4625#issuecomment-736131299 | https://api.github.com/repos/pydata/xarray/issues/4625 | MDEyOklzc3VlQ29tbWVudDczNjEzMTI5OQ== | dcherian 2448579 | 2020-12-01T00:12:41Z | 2020-12-01T00:12:41Z | MEMBER | Ah this works (but we lose ``` python simple customized weighted mean functiondef mean_func(ds): return ds.weighted(ds.weights.reset_coords(drop=True)).mean('time') ``` Adding https://github.com/pydata/xarray/blob/180e76d106c697b1dd94b814a49dc2d7e58c8551/xarray/core/weighted.py#L149
The new call to
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Non lazy behavior for weighted average when using resampled data 753517739 | |
736101365 | https://github.com/pydata/xarray/issues/4625#issuecomment-736101365 | https://api.github.com/repos/pydata/xarray/issues/4625 | MDEyOklzc3VlQ29tbWVudDczNjEwMTM2NQ== | dcherian 2448579 | 2020-11-30T22:46:27Z | 2020-11-30T22:51:34Z | MEMBER | The weighted fix in #4559 is correct, that's why
This is more instructive: ``` python from xarray.tests import raise_if_dask_computes with raise_if_dask_computes(): ds.resample(time='3AS').map(mean_func) ``` ``` python .... 150 151 def _sum_of_weights( ~/work/python/xarray/xarray/core/computation.py in dot(dims, arrays, kwargs) 1483 output_core_dims=output_core_dims, 1484 join=join, -> 1485 dask="allowed", 1486 ) 1487 return result.transpose([d for d in all_dims if d in result.dims]) ~/work/python/xarray/xarray/core/computation.py in apply_ufunc(func, input_core_dims, output_core_dims, exclude_dims, vectorize, join, dataset_join, dataset_fill_value, keep_attrs, kwargs, dask, output_dtypes, output_sizes, meta, dask_gufunc_kwargs, *args) 1132 join=join, 1133 exclude_dims=exclude_dims, -> 1134 keep_attrs=keep_attrs, 1135 ) 1136 # feed Variables directly through apply_variable_ufunc ~/work/python/xarray/xarray/core/computation.py in apply_dataarray_vfunc(func, signature, join, exclude_dims, keep_attrs, *args) 266 else: 267 name = result_name(args) --> 268 result_coords = build_output_coords(args, signature, exclude_dims) 269 270 data_vars = [getattr(a, "variable", a) for a in args] ~/work/python/xarray/xarray/core/computation.py in build_output_coords(args, signature, exclude_dims) 231 # TODO: save these merged indexes, instead of re-computing them later 232 merged_vars, unused_indexes = merge_coordinates_without_align( --> 233 coords_list, exclude_dims=exclude_dims 234 ) 235 ~/work/python/xarray/xarray/core/merge.py in merge_coordinates_without_align(objects, prioritized, exclude_dims) 327 filtered = collected 328 --> 329 return merge_collected(filtered, prioritized) 330 331 ~/work/python/xarray/xarray/core/merge.py in merge_collected(grouped, prioritized, compat) 227 variables = [variable for variable, _ in elements_list] 228 try: --> 229 merged_vars[name] = unique_variable(name, variables, compat) 230 except MergeError: 231 if compat != "minimal": ~/work/python/xarray/xarray/core/merge.py in unique_variable(name, variables, compat, equals) 132 if equals is None: 133 # now compare values with minimum number of computes --> 134 out = out.compute() 135 for var in variables[1:]: 136 equals = getattr(out, compat)(var) ~/work/python/xarray/xarray/core/variable.py in compute(self, kwargs) 459 """ 460 new = self.copy(deep=False) --> 461 return new.load(kwargs) 462 463 def dask_tokenize(self): ~/work/python/xarray/xarray/core/variable.py in load(self, kwargs) 435 """ 436 if is_duck_dask_array(self._data): --> 437 self._data = as_compatible_data(self._data.compute(kwargs)) 438 elif not is_duck_array(self._data): 439 self._data = np.asarray(self._data) ~/miniconda3/envs/dcpy/lib/python3.7/site-packages/dask/base.py in compute(self, kwargs) 165 dask.base.compute 166 """ --> 167 (result,) = compute(self, traverse=False, kwargs) 168 return result 169 ~/miniconda3/envs/dcpy/lib/python3.7/site-packages/dask/base.py in compute(args, kwargs) 450 postcomputes.append(x.dask_postcompute()) 451 --> 452 results = schedule(dsk, keys, kwargs) 453 return repack([f(r, a) for r, (f, a) in zip(results, postcomputes)]) 454 ~/work/python/xarray/xarray/tests/init.py in call(self, dsk, keys, kwargs) 112 raise RuntimeError( 113 "Too many computes. Total: %d > max: %d." --> 114 % (self.total_computes, self.max_computes) 115 ) 116 return dask.get(dsk, keys, kwargs) RuntimeError: Too many computes. Total: 1 > max: 0. ``` It looks like we're repeatedly checking ``` python ipdb> up
ipdb> name 'weights' ipdb> variables [<xarray.Variable (time: 1)> dask.array<getitem, shape=(1,), dtype=float64, chunksize=(1,), chunktype=numpy.ndarray>, <xarray.Variable (time: 1)> dask.array<copy, shape=(1,), dtype=float64, chunksize=(1,), chunktype=numpy.ndarray>] ipdb> variables[0].data.name 'getitem-2a74b8ca20ae20100597e397404ba17b' ipdb> variables[1].data.name 'copy-fff901a87f4a2293c750766c554aa68d' ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Non lazy behavior for weighted average when using resampled data 753517739 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1