issue_comments
1 row where issue = 742656246 and user = 31640292 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Match all float types in formatitem · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 727279860 | https://github.com/pydata/xarray/pull/4582#issuecomment-727279860 | https://api.github.com/repos/pydata/xarray/issues/4582 | MDEyOklzc3VlQ29tbWVudDcyNzI3OTg2MA== | WardBrian 31640292 | 2020-11-14T23:23:33Z | 2020-11-14T23:23:33Z | CONTRIBUTOR | I've added test cases for the 3 main numpy floats (16, 32, and 64 bit). In particular they are testing the rounding behavior, which differs if they are matched in the |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Match all float types in formatitem 742656246 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1