issue_comments
1 row where issue = 742656246 and user = 31640292 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Match all float types in formatitem · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
727279860 | https://github.com/pydata/xarray/pull/4582#issuecomment-727279860 | https://api.github.com/repos/pydata/xarray/issues/4582 | MDEyOklzc3VlQ29tbWVudDcyNzI3OTg2MA== | WardBrian 31640292 | 2020-11-14T23:23:33Z | 2020-11-14T23:23:33Z | CONTRIBUTOR | I've added test cases for the 3 main numpy floats (16, 32, and 64 bit). In particular they are testing the rounding behavior, which differs if they are matched in the |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Match all float types in formatitem 742656246 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1