issue_comments
3 rows where issue = 650549352 and user = 13906519 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Provide a "shrink" command to remove bounding nan/ whitespace of DataArray · 3 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
654015589 | https://github.com/pydata/xarray/issues/4197#issuecomment-654015589 | https://api.github.com/repos/pydata/xarray/issues/4197 | MDEyOklzc3VlQ29tbWVudDY1NDAxNTU4OQ== | cwerner 13906519 | 2020-07-06T05:02:48Z | 2020-07-07T13:24:29Z | NONE | Ok, so for now I roll with this: ```python def shrink_dataarray(da, dims=None): """remove nodata borders from spatial dims of dataarray""" dims = set(dims) if dims else set(da.dims)
``` Is it possible to identify non-spatial dims with plain xarray dataarrays (non cf-xarray)? And is there maybe a way to detect unlimited dims (usually the time dim)? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Provide a "shrink" command to remove bounding nan/ whitespace of DataArray 650549352 | |
653753668 | https://github.com/pydata/xarray/issues/4197#issuecomment-653753668 | https://api.github.com/repos/pydata/xarray/issues/4197 | MDEyOklzc3VlQ29tbWVudDY1Mzc1MzY2OA== | cwerner 13906519 | 2020-07-04T11:22:42Z | 2020-07-04T11:22:42Z | NONE | @fujiisoup Thanks, that’s great and much cleaner than my previous numpy code. I’ll run with that and maybe try to pack that in a general function. Not sure is this a common enough problem to have in xarray itself? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Provide a "shrink" command to remove bounding nan/ whitespace of DataArray 650549352 | |
653748350 | https://github.com/pydata/xarray/issues/4197#issuecomment-653748350 | https://api.github.com/repos/pydata/xarray/issues/4197 | MDEyOklzc3VlQ29tbWVudDY1Mzc0ODM1MA== | cwerner 13906519 | 2020-07-04T10:20:56Z | 2020-07-04T10:37:29Z | NONE | @keewis @fujiisoup @shoyer thanks. this does indeed not work for my used case if there's a all-nan stretch between parts of the array (think UK and the channel and the northern coast of France) - I simply want to get rid of extra space around a geographic domain (i.e. the nan edges) ``` data = np.array([ [np.nan, np.nan, np.nan, np.nan], [np.nan, 0, 2, np.nan], [np.nan, np.nan, np.nan, np.nan], [np.nan, 2, 0, np.nan], [np.nan, np.nan, np.nan, np.nan], ]) da = xr.DataArray(data, dims=("x", "y")) this also results in a 2x2 array, but should be 3x2``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Provide a "shrink" command to remove bounding nan/ whitespace of DataArray 650549352 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1