issue_comments
7 rows where issue = 650549352 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Provide a "shrink" command to remove bounding nan/ whitespace of DataArray · 7 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
654015589 | https://github.com/pydata/xarray/issues/4197#issuecomment-654015589 | https://api.github.com/repos/pydata/xarray/issues/4197 | MDEyOklzc3VlQ29tbWVudDY1NDAxNTU4OQ== | cwerner 13906519 | 2020-07-06T05:02:48Z | 2020-07-07T13:24:29Z | NONE | Ok, so for now I roll with this: ```python def shrink_dataarray(da, dims=None): """remove nodata borders from spatial dims of dataarray""" dims = set(dims) if dims else set(da.dims)
``` Is it possible to identify non-spatial dims with plain xarray dataarrays (non cf-xarray)? And is there maybe a way to detect unlimited dims (usually the time dim)? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Provide a "shrink" command to remove bounding nan/ whitespace of DataArray 650549352 | |
653753668 | https://github.com/pydata/xarray/issues/4197#issuecomment-653753668 | https://api.github.com/repos/pydata/xarray/issues/4197 | MDEyOklzc3VlQ29tbWVudDY1Mzc1MzY2OA== | cwerner 13906519 | 2020-07-04T11:22:42Z | 2020-07-04T11:22:42Z | NONE | @fujiisoup Thanks, that’s great and much cleaner than my previous numpy code. I’ll run with that and maybe try to pack that in a general function. Not sure is this a common enough problem to have in xarray itself? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Provide a "shrink" command to remove bounding nan/ whitespace of DataArray 650549352 | |
653752196 | https://github.com/pydata/xarray/issues/4197#issuecomment-653752196 | https://api.github.com/repos/pydata/xarray/issues/4197 | MDEyOklzc3VlQ29tbWVudDY1Mzc1MjE5Ng== | fujiisoup 6815844 | 2020-07-04T11:05:49Z | 2020-07-04T11:05:49Z | MEMBER | @cwerner ```python In [40]: idx = (da.count('y').cumsum() != 0) * (da.count('y')[::-1].cumsum()[::- ...: 1] != 0) In [42]: da.isel(x=idx) |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Provide a "shrink" command to remove bounding nan/ whitespace of DataArray 650549352 | |
653748350 | https://github.com/pydata/xarray/issues/4197#issuecomment-653748350 | https://api.github.com/repos/pydata/xarray/issues/4197 | MDEyOklzc3VlQ29tbWVudDY1Mzc0ODM1MA== | cwerner 13906519 | 2020-07-04T10:20:56Z | 2020-07-04T10:37:29Z | NONE | @keewis @fujiisoup @shoyer thanks. this does indeed not work for my used case if there's a all-nan stretch between parts of the array (think UK and the channel and the northern coast of France) - I simply want to get rid of extra space around a geographic domain (i.e. the nan edges) ``` data = np.array([ [np.nan, np.nan, np.nan, np.nan], [np.nan, 0, 2, np.nan], [np.nan, np.nan, np.nan, np.nan], [np.nan, 2, 0, np.nan], [np.nan, np.nan, np.nan, np.nan], ]) da = xr.DataArray(data, dims=("x", "y")) this also results in a 2x2 array, but should be 3x2``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Provide a "shrink" command to remove bounding nan/ whitespace of DataArray 650549352 | |
653731489 | https://github.com/pydata/xarray/issues/4197#issuecomment-653731489 | https://api.github.com/repos/pydata/xarray/issues/4197 | MDEyOklzc3VlQ29tbWVudDY1MzczMTQ4OQ== | shoyer 1217238 | 2020-07-04T07:04:51Z | 2020-07-04T07:04:51Z | MEMBER | Another way to write this currently would be with |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Provide a "shrink" command to remove bounding nan/ whitespace of DataArray 650549352 | |
653729887 | https://github.com/pydata/xarray/issues/4197#issuecomment-653729887 | https://api.github.com/repos/pydata/xarray/issues/4197 | MDEyOklzc3VlQ29tbWVudDY1MzcyOTg4Nw== | fujiisoup 6815844 | 2020-07-04T06:47:04Z | 2020-07-04T06:47:04Z | MEMBER | @keewis
I think it is close to @cwerner Is it close to your example? If you don't want to drop all nans but only those located at the edges, the above example does not work. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Provide a "shrink" command to remove bounding nan/ whitespace of DataArray 650549352 | |
653578137 | https://github.com/pydata/xarray/issues/4197#issuecomment-653578137 | https://api.github.com/repos/pydata/xarray/issues/4197 | MDEyOklzc3VlQ29tbWVudDY1MzU3ODEzNw== | keewis 14808389 | 2020-07-03T14:38:57Z | 2020-07-03T14:41:16Z | MEMBER | you should be able to emulate that using: ```python In [2]: data = np.array([ ...: [np.nan, np.nan, np.nan, np.nan], ...: [np.nan, 0, 2, np.nan], ...: [np.nan, 2, 0, np.nan], ...: [np.nan, np.nan, np.nan, np.nan], ...: ]) ...: da = xr.DataArray(data, dims=("x", "y")) In [3]: def shrink(arr): ...: notnull = da.notnull() ...: indexers = { ...: dim: notnull.any(dim=set(da.dims) - set([dim])) ...: for dim in da.dims ...: } ...: return arr.sel(**indexers) ...: In [4]: da Out[4]: <xarray.DataArray (x: 4, y: 4)> array([[nan, nan, nan, nan], [nan, 0., 2., nan], [nan, 2., 0., nan], [nan, nan, nan, nan]]) Dimensions without coordinates: x, y In [5]: shrink(da) Out[5]: <xarray.DataArray (x: 2, y: 2)> array([[0., 2.], [2., 0.]]) Dimensions without coordinates: x, y ``` @pydata/xarray: is this common enough to add it to the API? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Provide a "shrink" command to remove bounding nan/ whitespace of DataArray 650549352 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 4