issue_comments
4 rows where issue = 597785475 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Interpolation - Support extrapolation method "clip" · 4 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1114752371 | https://github.com/pydata/xarray/issues/3962#issuecomment-1114752371 | https://api.github.com/repos/pydata/xarray/issues/3962 | IC_kwDOAMm_X85CccVz | stale[bot] 26384082 | 2022-05-02T11:37:48Z | 2022-05-02T11:37:48Z | NONE | In order to maintain a list of currently relevant issues, we mark issues as stale after a period of inactivity If this issue remains relevant, please comment here or remove the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Interpolation - Support extrapolation method "clip" 597785475 | |
612080638 | https://github.com/pydata/xarray/issues/3962#issuecomment-612080638 | https://api.github.com/repos/pydata/xarray/issues/3962 | MDEyOklzc3VlQ29tbWVudDYxMjA4MDYzOA== | dcherian 2448579 | 2020-04-10T15:32:18Z | 2020-04-10T15:32:18Z | MEMBER | As noted in #3956
Not sure if there's a big performance gain. @jhamman implemented these interpolators originally AFAIK. Perhaps he remembers why we use both. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Interpolation - Support extrapolation method "clip" 597785475 | |
612077587 | https://github.com/pydata/xarray/issues/3962#issuecomment-612077587 | https://api.github.com/repos/pydata/xarray/issues/3962 | MDEyOklzc3VlQ29tbWVudDYxMjA3NzU4Nw== | Illviljan 14371165 | 2020-04-10T15:25:30Z | 2020-04-10T15:30:05Z | MEMBER | Nice find! The documentation doesn't explain that at all currently. But that solution doesn't work for 1d DataArrays. You have to use this kwargs instead:
````python import numpy as np import xarray as xr def interp(da, coords, extrapolation='clip'): """ Linear interpolation that clips the inputs to the coords min and max value.
Create coordinates:x = np.linspace(1000, 6000, 4) y = np.linspace(100, 1200, 3) z = np.linspace(1, 2, 2) Create 1D DataArray:da1 = xr.DataArray(data=2*x, coords=[('x', x)]) Create 2D DataArray:X = np.meshgrid(*[x, y], indexing='ij') data = X[0] * X[1] da2 = xr.DataArray(data=data, coords=[('x', x), ('y', y)]) Create 3D DataArray:X = np.meshgrid(*[x, y, z], indexing='ij') data = X[0] * X[1] * X[2] da3 = xr.DataArray(data=data, coords=[('x', x), ('y', y), ('z', z)]) Attempt to extrapolate:print(interp(da1, {'x': 7000})) print(interp(da2, {'x': 7000, 'y': 375})) print(interp(da3, {'x': 7000, 'y': 375, 'z': 1})) ```` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Interpolation - Support extrapolation method "clip" 597785475 | |
612024066 | https://github.com/pydata/xarray/issues/3962#issuecomment-612024066 | https://api.github.com/repos/pydata/xarray/issues/3962 | MDEyOklzc3VlQ29tbWVudDYxMjAyNDA2Ng== | dcherian 2448579 | 2020-04-10T13:17:36Z | 2020-04-10T13:17:36Z | MEMBER | Scipy will do this for you if you ask it to:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Interpolation - Support extrapolation method "clip" 597785475 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 3