issue_comments: 612077587
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/3962#issuecomment-612077587 | https://api.github.com/repos/pydata/xarray/issues/3962 | 612077587 | MDEyOklzc3VlQ29tbWVudDYxMjA3NzU4Nw== | 14371165 | 2020-04-10T15:25:30Z | 2020-04-10T15:30:05Z | MEMBER | Nice find! The documentation doesn't explain that at all currently. But that solution doesn't work for 1d DataArrays. You have to use this kwargs instead:
````python import numpy as np import xarray as xr def interp(da, coords, extrapolation='clip'): """ Linear interpolation that clips the inputs to the coords min and max value.
Create coordinates:x = np.linspace(1000, 6000, 4) y = np.linspace(100, 1200, 3) z = np.linspace(1, 2, 2) Create 1D DataArray:da1 = xr.DataArray(data=2*x, coords=[('x', x)]) Create 2D DataArray:X = np.meshgrid(*[x, y], indexing='ij') data = X[0] * X[1] da2 = xr.DataArray(data=data, coords=[('x', x), ('y', y)]) Create 3D DataArray:X = np.meshgrid(*[x, y, z], indexing='ij') data = X[0] * X[1] * X[2] da3 = xr.DataArray(data=data, coords=[('x', x), ('y', y), ('z', z)]) Attempt to extrapolate:print(interp(da1, {'x': 7000})) print(interp(da2, {'x': 7000, 'y': 375})) print(interp(da3, {'x': 7000, 'y': 375, 'z': 1})) ```` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
597785475 |