issue_comments
1 row where issue = 572875480 and user = 25071375 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- {DataArray,Dataset}.rank() should support an optional list of dimensions · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
973623524 | https://github.com/pydata/xarray/issues/3810#issuecomment-973623524 | https://api.github.com/repos/pydata/xarray/issues/3810 | IC_kwDOAMm_X846CFDk | josephnowak 25071375 | 2021-11-19T01:00:11Z | 2021-11-19T15:09:10Z | CONTRIBUTOR | Is it possible to add the option of modifying what happens when there is a tie in the rank? (If you want I can create a separate issue for this) I think this can be done using the scipy rankdata function instead of the bottleneck rank (but also I think that adding the method option for the bottleneck package is also possible). Small example: ```py arr = xarray.DataArray( dask.array.random.random((11, 10), chunks=(3, 2)), coords={'a': list(range(11)), 'b': list(range(10))} ) def rank(x: xarray.DataArray, dim: str, method: str): # This option generate less tasks, I don't know why
def rank2(x: xarray.DataArray, dim: str, method: str): from scipy.stats import rankdata
arr_rank1 = rank(arr, 'a', 'ordinal') arr_rank2 = rank2(arr, 'a', 'ordinal') assert arr_rank1.equals(arr_rank2) ``` ```py Probably this can work for ranking arrays with nan valuesdef _nanrankdata1(a, method): y = np.empty(a.shape, dtype=np.float64) y.fill(np.nan) idx = ~np.isnan(a) y[idx] = rankdata(a[idx], method=method) return y ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1