issue_comments
10 rows where issue = 572875480 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- {DataArray,Dataset}.rank() should support an optional list of dimensions · 10 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
973623524 | https://github.com/pydata/xarray/issues/3810#issuecomment-973623524 | https://api.github.com/repos/pydata/xarray/issues/3810 | IC_kwDOAMm_X846CFDk | josephnowak 25071375 | 2021-11-19T01:00:11Z | 2021-11-19T15:09:10Z | CONTRIBUTOR | Is it possible to add the option of modifying what happens when there is a tie in the rank? (If you want I can create a separate issue for this) I think this can be done using the scipy rankdata function instead of the bottleneck rank (but also I think that adding the method option for the bottleneck package is also possible). Small example: ```py arr = xarray.DataArray( dask.array.random.random((11, 10), chunks=(3, 2)), coords={'a': list(range(11)), 'b': list(range(10))} ) def rank(x: xarray.DataArray, dim: str, method: str): # This option generate less tasks, I don't know why
def rank2(x: xarray.DataArray, dim: str, method: str): from scipy.stats import rankdata
arr_rank1 = rank(arr, 'a', 'ordinal') arr_rank2 = rank2(arr, 'a', 'ordinal') assert arr_rank1.equals(arr_rank2) ``` ```py Probably this can work for ranking arrays with nan valuesdef _nanrankdata1(a, method): y = np.empty(a.shape, dtype=np.float64) y.fill(np.nan) idx = ~np.isnan(a) y[idx] = rankdata(a[idx], method=method) return y ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 | |
592738965 | https://github.com/pydata/xarray/issues/3810#issuecomment-592738965 | https://api.github.com/repos/pydata/xarray/issues/3810 | MDEyOklzc3VlQ29tbWVudDU5MjczODk2NQ== | max-sixty 5635139 | 2020-02-28T21:33:35Z | 2020-02-28T21:33:35Z | MEMBER | Yeah, unfortunately I'm fairly confident about this; have a go with moderately large arrays for |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 | |
592737661 | https://github.com/pydata/xarray/issues/3810#issuecomment-592737661 | https://api.github.com/repos/pydata/xarray/issues/3810 | MDEyOklzc3VlQ29tbWVudDU5MjczNzY2MQ== | seth-p 7441788 | 2020-02-28T21:29:58Z | 2020-02-28T21:31:31Z | CONTRIBUTOR | Note that with the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 | |
592721162 | https://github.com/pydata/xarray/issues/3810#issuecomment-592721162 | https://api.github.com/repos/pydata/xarray/issues/3810 | MDEyOklzc3VlQ29tbWVudDU5MjcyMTE2Mg== | max-sixty 5635139 | 2020-02-28T20:47:33Z | 2020-02-28T20:47:33Z | MEMBER | Great -- that's cool and a good implementation of We could use something similar for groupbys though? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 | |
592715925 | https://github.com/pydata/xarray/issues/3810#issuecomment-592715925 | https://api.github.com/repos/pydata/xarray/issues/3810 | MDEyOklzc3VlQ29tbWVudDU5MjcxNTkyNQ== | seth-p 7441788 | 2020-02-28T20:33:43Z | 2020-02-28T20:35:57Z | CONTRIBUTOR | A few minor tweaks needed: ``` In [20]: import bottleneck In [21]: xr.apply_ufunc(
...: lambda x: bottleneck.rankdata(x).reshape(x.shape),
...: d,
...: input_core_dims=[['xyz', 'abc']],
...: output_core_dims=[['xyz', 'abc']],
...: vectorize=True
...: ).transpose(*d.dims) Despite what the docs say, |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 | |
592708353 | https://github.com/pydata/xarray/issues/3810#issuecomment-592708353 | https://api.github.com/repos/pydata/xarray/issues/3810 | MDEyOklzc3VlQ29tbWVudDU5MjcwODM1Mw== | max-sixty 5635139 | 2020-02-28T20:13:51Z | 2020-02-28T20:13:51Z | MEMBER | Could you try running that? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 | |
592672463 | https://github.com/pydata/xarray/issues/3810#issuecomment-592672463 | https://api.github.com/repos/pydata/xarray/issues/3810 | MDEyOklzc3VlQ29tbWVudDU5MjY3MjQ2Mw== | seth-p 7441788 | 2020-02-28T18:51:18Z | 2020-02-28T18:52:29Z | CONTRIBUTOR | What's wrong with the following? (Still need to deal with Per https://kwgoodman.github.io/bottleneck-doc/reference.html#bottleneck.rankdata, "The default (axis=None) is to rank the elements of the flattened array." |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 | |
592665711 | https://github.com/pydata/xarray/issues/3810#issuecomment-592665711 | https://api.github.com/repos/pydata/xarray/issues/3810 | MDEyOklzc3VlQ29tbWVudDU5MjY2NTcxMQ== | max-sixty 5635139 | 2020-02-28T18:34:44Z | 2020-02-28T18:34:44Z | MEMBER | Yes, we can always reshape as a way of running numerical operations over multiple dimensions. But reshaping can be an expensive operation, so doing it as part of a numerical operation can cause surprises. (if you're interested, try running a sum over multiple dimensions and comparing to a reshape + a sum over the single reshaped dimension). Instead, users can do this themselves, giving them context and control. Reshaping is OK to do in |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 | |
592654794 | https://github.com/pydata/xarray/issues/3810#issuecomment-592654794 | https://api.github.com/repos/pydata/xarray/issues/3810 | MDEyOklzc3VlQ29tbWVudDU5MjY1NDc5NA== | seth-p 7441788 | 2020-02-28T18:06:57Z | 2020-02-28T18:06:57Z | CONTRIBUTOR | Assuming |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 | |
592645335 | https://github.com/pydata/xarray/issues/3810#issuecomment-592645335 | https://api.github.com/repos/pydata/xarray/issues/3810 | MDEyOklzc3VlQ29tbWVudDU5MjY0NTMzNQ== | max-sixty 5635139 | 2020-02-28T17:43:05Z | 2020-02-28T17:43:05Z | MEMBER | This would be great. The underlying numerical library we use, bottleneck, doesn't support multiple dimensions. If there were another option, or someone wanted to write one in numbagg, that would be a welcome addition. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
{DataArray,Dataset}.rank() should support an optional list of dimensions 572875480 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 3