issue_comments
4 rows where issue = 483280810 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- ``argmax()`` causes dask to compute · 4 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
524075569 | https://github.com/pydata/xarray/issues/3237#issuecomment-524075569 | https://api.github.com/repos/pydata/xarray/issues/3237 | MDEyOklzc3VlQ29tbWVudDUyNDA3NTU2OQ== | ulijh 13190237 | 2019-08-22T21:00:34Z | 2019-08-22T21:00:34Z | CONTRIBUTOR | Thanks @shoyer. Cool, then this was easier than I expected. I added the patch and nanargmax/min to the nputils in #3244. What do you think? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
``argmax()`` causes dask to compute 483280810 | |
523991579 | https://github.com/pydata/xarray/issues/3237#issuecomment-523991579 | https://api.github.com/repos/pydata/xarray/issues/3237 | MDEyOklzc3VlQ29tbWVudDUyMzk5MTU3OQ== | shoyer 1217238 | 2019-08-22T17:03:27Z | 2019-08-22T17:03:27Z | MEMBER | Thanks for sharing the patch! I dropped into a debugger by adding
So it looks like |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
``argmax()`` causes dask to compute 483280810 | |
523952983 | https://github.com/pydata/xarray/issues/3237#issuecomment-523952983 | https://api.github.com/repos/pydata/xarray/issues/3237 | MDEyOklzc3VlQ29tbWVudDUyMzk1Mjk4Mw== | ulijh 13190237 | 2019-08-22T15:22:33Z | 2019-08-22T15:22:33Z | CONTRIBUTOR | Those little changes do solve the MCVE, but break at least one test. I don't have enough of an understanding of the (nan)ops logic in xarray to get around the issue. But may be this helps: The change``` diff --git a/xarray/core/nanops.py b/xarray/core/nanops.py index 9ba4eae2..784a1d01 100644 --- a/xarray/core/nanops.py +++ b/xarray/core/nanops.py @@ -91,17 +91,9 @@ def nanargmin(a, axis=None): fill_value = dtypes.get_pos_infinity(a.dtype) if a.dtype.kind == "O": return _nan_argminmax_object("argmin", fill_value, a, axis=axis) - a, mask = _replace_nan(a, fill_value) - if isinstance(a, dask_array_type): - res = dask_array.argmin(a, axis=axis) - else: - res = np.argmin(a, axis=axis)
def nanargmax(a, axis=None): @@ -109,17 +101,8 @@ def nanargmax(a, axis=None): if a.dtype.kind == "O": return _nan_argminmax_object("argmax", fill_value, a, axis=axis)
def nansum(a, axis=None, dtype=None, out=None, min_count=None): ``` The failing test``` python
... ``` Note: I habe numpy 1.17 instaleed so the error msg here seems missleading. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
``argmax()`` causes dask to compute 483280810 | |
523659811 | https://github.com/pydata/xarray/issues/3237#issuecomment-523659811 | https://api.github.com/repos/pydata/xarray/issues/3237 | MDEyOklzc3VlQ29tbWVudDUyMzY1OTgxMQ== | shoyer 1217238 | 2019-08-21T21:38:26Z | 2019-08-21T21:38:26Z | MEMBER | Yes, this is definitely a bug -- thanks for clear example to reproduce it! These helper functions were originally added back in https://github.com/pydata/xarray/pull/1883 to handle object dtype arrays properly. So it would be nice to fix this for object arrays in dask, but for the much more common non-object dtype arrays we should really just be using |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
``argmax()`` causes dask to compute 483280810 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 2