home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where issue = 479942077 and user = 2448579 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • dcherian · 3 ✖

issue 1

  • How should xarray use/support sparse arrays? · 3 ✖

author_association 1

  • MEMBER 3
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
551134122 https://github.com/pydata/xarray/issues/3213#issuecomment-551134122 https://api.github.com/repos/pydata/xarray/issues/3213 MDEyOklzc3VlQ29tbWVudDU1MTEzNDEyMg== dcherian 2448579 2019-11-07T15:40:12Z 2019-11-07T15:40:12Z MEMBER

the coords, data_vars, join ,compat kwargs in that example are passed down to concat and merge, as appropriate. We do need more documentation on that ....

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How should xarray use/support sparse arrays? 479942077
551125982 https://github.com/pydata/xarray/issues/3213#issuecomment-551125982 https://api.github.com/repos/pydata/xarray/issues/3213 MDEyOklzc3VlQ29tbWVudDU1MTEyNTk4Mg== dcherian 2448579 2019-11-07T15:23:56Z 2019-11-07T15:23:56Z MEMBER

@El-minadero a lot of that overhead may be fixed on master and more recent xarray versions. https://xarray.pydata.org/en/stable/io.html#reading-multi-file-datasets has some tips on quickly concatenating / merging datasets. It depends on the datasets you are joining...

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How should xarray use/support sparse arrays? 479942077
526736529 https://github.com/pydata/xarray/issues/3213#issuecomment-526736529 https://api.github.com/repos/pydata/xarray/issues/3213 MDEyOklzc3VlQ29tbWVudDUyNjczNjUyOQ== dcherian 2448579 2019-08-30T20:21:28Z 2019-08-30T20:21:28Z MEMBER

conda install -c conda-forge sparse

Basically you need to install https://sparse.pydata.org/en/latest/ using either pip or conda.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How should xarray use/support sparse arrays? 479942077

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 143.069ms · About: xarray-datasette