issue_comments
1 row where issue = 419543087 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
issue 1
- [Feature Request] iteration equivalent numpy's nditer or ndenumerate · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
471768511 | https://github.com/pydata/xarray/issues/2805#issuecomment-471768511 | https://api.github.com/repos/pydata/xarray/issues/2805 | MDEyOklzc3VlQ29tbWVudDQ3MTc2ODUxMQ== | shoyer 1217238 | 2019-03-11T22:40:28Z | 2019-03-11T22:40:28Z | MEMBER | You could convert your data into pandas and use ds = xarray.tutorial.open_dataset('air_temperature')
records = ds.to_dataframe().reset_index().itertuples(index=False, name='Record')
print(list(itertools.islice(records, 5)))
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
[Feature Request] iteration equivalent numpy's nditer or ndenumerate 419543087 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1