home / github / issue_comments

Menu
  • Search all tables
  • GraphQL API

issue_comments: 471768511

This data as json

html_url issue_url id node_id user created_at updated_at author_association body reactions performed_via_github_app issue
https://github.com/pydata/xarray/issues/2805#issuecomment-471768511 https://api.github.com/repos/pydata/xarray/issues/2805 471768511 MDEyOklzc3VlQ29tbWVudDQ3MTc2ODUxMQ== 1217238 2019-03-11T22:40:28Z 2019-03-11T22:40:28Z MEMBER

You could convert your data into pandas and use .itertuples(), e.g., ```python import xarray import itertools

ds = xarray.tutorial.open_dataset('air_temperature') records = ds.to_dataframe().reset_index().itertuples(index=False, name='Record') print(list(itertools.islice(records, 5))) Outputs: [Record(lat=75.0, lon=200.0, time=Timestamp('2013-01-01 00:00:00'), air=241.1999969482422), Record(lat=75.0, lon=200.0, time=Timestamp('2013-01-01 06:00:00'), air=242.09999084472656), Record(lat=75.0, lon=200.0, time=Timestamp('2013-01-01 12:00:00'), air=242.29998779296875), Record(lat=75.0, lon=200.0, time=Timestamp('2013-01-01 18:00:00'), air=241.88999938964844), Record(lat=75.0, lon=200.0, time=Timestamp('2013-01-02 00:00:00'), air=243.1999969482422)] ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  419543087
Powered by Datasette · Queries took 0.783ms · About: xarray-datasette