issue_comments
1 row where issue = 415774106 and user = 15331990 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Add "unique()" method, mimicking pandas · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
469477745 | https://github.com/pydata/xarray/issues/2795#issuecomment-469477745 | https://api.github.com/repos/pydata/xarray/issues/2795 | MDEyOklzc3VlQ29tbWVudDQ2OTQ3Nzc0NQ== | ahuang11 15331990 | 2019-03-05T00:01:58Z | 2019-03-05T00:01:58Z | CONTRIBUTOR | Right, it would return a 1D numpy or dask array. I suppose I'm used to simply typing pd.Series().unique() rather than np.unique(pd.Series()). I use it in for loops primarily.
|
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add "unique()" method, mimicking pandas 415774106 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1