home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

1 row where issue = 415774106 and user = 15331990 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • ahuang11 · 1 ✖

issue 1

  • Add "unique()" method, mimicking pandas · 1 ✖

author_association 1

  • CONTRIBUTOR 1
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
469477745 https://github.com/pydata/xarray/issues/2795#issuecomment-469477745 https://api.github.com/repos/pydata/xarray/issues/2795 MDEyOklzc3VlQ29tbWVudDQ2OTQ3Nzc0NQ== ahuang11 15331990 2019-03-05T00:01:58Z 2019-03-05T00:01:58Z CONTRIBUTOR

Right, it would return a 1D numpy or dask array.

I suppose I'm used to simply typing pd.Series().unique() rather than np.unique(pd.Series()).

I use it in for loops primarily. for season in da['time.season'].unique(): vs for season in np.unique(da['time.season'].data):

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add "unique()" method, mimicking pandas 415774106

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 12.376ms · About: xarray-datasette