issue_comments
1 row where issue = 403462155 and user = 43613877 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- ENH: resample methods with tolerance · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
457963623 | https://github.com/pydata/xarray/pull/2716#issuecomment-457963623 | https://api.github.com/repos/pydata/xarray/issues/2716 | MDEyOklzc3VlQ29tbWVudDQ1Nzk2MzYyMw== | observingClouds 43613877 | 2019-01-27T23:16:58Z | 2019-01-27T23:24:46Z | CONTRIBUTOR | Sure @jhamman, I'll add some tests. However, I thought the test should rather go into test_dataarray.py than test_missing.py, because this is an improvement to resample/_upsample? Something like ```python def test_upsample_tolerance(self): # Test tolerance keyword for upsample methods bfill, pad, nearest times = pd.date_range('2000-01-01', freq='1D', periods=2) times_upsampled = pd.date_range('2000-01-01', freq='6H', periods=5) array = DataArray(np.arange(2), [('time', times)])
``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: resample methods with tolerance 403462155 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1