issue_comments
5 rows where issue = 29220463 and user = 1794715 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Modified Dataset.replace to replace a dictionary of variables · 5 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 37432906 | https://github.com/pydata/xarray/pull/62#issuecomment-37432906 | https://api.github.com/repos/pydata/xarray/issues/62 | MDEyOklzc3VlQ29tbWVudDM3NDMyOTA2 | ebrevdo 1794715 | 2014-03-12T16:50:18Z | 2014-03-12T16:50:18Z | CONTRIBUTOR | I definitely like the inplace idea. We could also use the function name update in this case. On Mar 12, 2014 9:49 AM, "Stephan Hoyer" notifications@github.com wrote:
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Modified Dataset.replace to replace a dictionary of variables 29220463 | |
| 37376646 | https://github.com/pydata/xarray/pull/62#issuecomment-37376646 | https://api.github.com/repos/pydata/xarray/issues/62 | MDEyOklzc3VlQ29tbWVudDM3Mzc2NjQ2 | ebrevdo 1794715 | 2014-03-12T05:24:06Z | 2014-03-12T05:24:06Z | CONTRIBUTOR | True. Maybe stick with replace, and we can put filter on the to do? I may work on it tomorrow. On Mar 11, 2014 10:10 PM, "Stephan Hoyer" notifications@github.com wrote:
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Modified Dataset.replace to replace a dictionary of variables 29220463 | |
| 37375935 | https://github.com/pydata/xarray/pull/62#issuecomment-37375935 | https://api.github.com/repos/pydata/xarray/issues/62 | MDEyOklzc3VlQ29tbWVudDM3Mzc1OTM1 | ebrevdo 1794715 | 2014-03-12T05:05:00Z | 2014-03-12T05:05:00Z | CONTRIBUTOR | Don't dicts have an update function that works this way? On Mar 11, 2014 9:48 PM, "Stephan Hoyer" notifications@github.com wrote:
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Modified Dataset.replace to replace a dictionary of variables 29220463 | |
| 37358215 | https://github.com/pydata/xarray/pull/62#issuecomment-37358215 | https://api.github.com/repos/pydata/xarray/issues/62 | MDEyOklzc3VlQ29tbWVudDM3MzU4MjE1 | ebrevdo 1794715 | 2014-03-11T23:13:12Z | 2014-03-11T23:13:12Z | CONTRIBUTOR | This in response to your first bullet: Create a new dataset based on some (but not all) variables from an existing dataset. for that there's a filter() in pandas. it would be useful to have here as well. On Tue, Mar 11, 2014 at 4:11 PM, Stephan Hoyer notifications@github.comwrote:
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Modified Dataset.replace to replace a dictionary of variables 29220463 | |
| 37354993 | https://github.com/pydata/xarray/pull/62#issuecomment-37354993 | https://api.github.com/repos/pydata/xarray/issues/62 | MDEyOklzc3VlQ29tbWVudDM3MzU0OTkz | ebrevdo 1794715 | 2014-03-11T22:36:32Z | 2014-03-11T22:36:32Z | CONTRIBUTOR | Is part 1 similar to the pandas .filter operator? That one has nice keywords, 'like', 'regex', etc. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Modified Dataset.replace to replace a dictionary of variables 29220463 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1