home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where issue = 274392275 and user = 6628425 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: reactions, created_at (date), updated_at (date)

user 1

  • spencerkclark · 3 ✖

issue 1

  • Potential test failures with libnetcdf 4.5.0 · 3 ✖

author_association 1

  • MEMBER 3
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
345384115 https://github.com/pydata/xarray/issues/1721#issuecomment-345384115 https://api.github.com/repos/pydata/xarray/issues/1721 MDEyOklzc3VlQ29tbWVudDM0NTM4NDExNQ== spencerkclark 6628425 2017-11-17T22:33:37Z 2017-11-17T22:33:37Z MEMBER

Thanks @shoyer, I think it's the files written by the 'scipy' engine and read by the 'netcdf4' engine. Here is a minimal example: ``` In [1]: import xarray as xr

In [2]: da = xr.DataArray([1, 2, 3], dims=['x'])

In [3]: da.to_netcdf('test_netcdf4.nc', format='NETCDF3_CLASSIC', engine='netcdf4')

In [4]: ds = xr.open_dataset('test_netcdf4.nc', engine='netcdf4')

In [5]: ds = xr.open_dataset('test_netcdf4.nc', engine='scipy')

In [6]: da.to_netcdf('test_scipy.nc', format='NETCDF3_CLASSIC', engine='scipy')

In [7]: ds = xr.open_dataset('test_scipy.nc', engine='scipy')

In [8]: ds = xr.open_dataset('test_scipy.nc', engine='netcdf4')

IOError Traceback (most recent call last) <ipython-input-8-13ddc3810e0b> in <module>() ----> 1 ds = xr.open_dataset('test_scipy.nc', engine='netcdf4')

//anaconda/envs/research/lib/python2.7/site-packages/xarray/backends/api.pyc in open_dataset(filename_or_obj, group, decode_cf, mask_and_scale, decode_times, autoclose, concat_characters, decode_coords, engine, chunks, lock, cache, drop_variables) 280 if engine == 'netcdf4': 281 store = backends.NetCDF4DataStore(filename_or_obj, group=group, --> 282 autoclose=autoclose) 283 elif engine == 'scipy': 284 store = backends.ScipyDataStore(filename_or_obj,

//anaconda/envs/research/lib/python2.7/site-packages/xarray/backends/netCDF4_.pyc in init(self, filename, mode, format, group, writer, clobber, diskless, persist, autoclose) 208 diskless=diskless, persist=persist, 209 format=format) --> 210 self.ds = opener() 211 self._autoclose = autoclose 212 self._isopen = True

//anaconda/envs/research/lib/python2.7/site-packages/xarray/backends/netCDF4_.pyc in _open_netcdf4_group(filename, mode, group, kwargs) 183 import netCDF4 as nc4 184 --> 185 ds = nc4.Dataset(filename, mode=mode, kwargs) 186 187 with close_on_error(ds):

netCDF4/_netCDF4.pyx in netCDF4._netCDF4.Dataset.init()

netCDF4/_netCDF4.pyx in netCDF4._netCDF4._ensure_nc_success()

IOError: [Errno -36] NetCDF: Invalid argument: '/Users/skc/test_scipy.nc' ``` Here's a link to the issue upstream: https://github.com/Unidata/netcdf-c/issues/657.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Potential test failures with libnetcdf 4.5.0 274392275
345317906 https://github.com/pydata/xarray/issues/1721#issuecomment-345317906 https://api.github.com/repos/pydata/xarray/issues/1721 MDEyOklzc3VlQ29tbWVudDM0NTMxNzkwNg== spencerkclark 6628425 2017-11-17T18:02:29Z 2017-11-17T18:30:44Z MEMBER

@ocefpaf thanks, empirically the original did the trick, but I have edited it for correctness.

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Potential test failures with libnetcdf 4.5.0 274392275
345316396 https://github.com/pydata/xarray/issues/1721#issuecomment-345316396 https://api.github.com/repos/pydata/xarray/issues/1721 MDEyOklzc3VlQ29tbWVudDM0NTMxNjM5Ng== spencerkclark 6628425 2017-11-17T17:56:29Z 2017-11-17T18:02:18Z MEMBER

@shoyer I initially ran into that too. I think depending on the libraries you have installed (or seek to install) conda may not let you upgrade to libnetcdf 4.5.0. To get libnetcdf 4.5.0 I created a clean environment with the following specification file: name: test_xarray_libnetcdf45 channels: - conda-forge dependencies: - python=3.6 - netcdf4 - libnetcdf=4.5.0 - numpy - mock - pandas - pytest - pip - dask - scipy Then from within that environment I did an editable install of the xarray master branch and ran the test suite.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Potential test failures with libnetcdf 4.5.0 274392275

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 40.683ms · About: xarray-datasette