home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

7 rows where issue = 274392275 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: reactions, created_at (date), updated_at (date)

user 4

  • spencerkclark 3
  • shoyer 2
  • ocefpaf 1
  • stale[bot] 1

author_association 3

  • MEMBER 5
  • CONTRIBUTOR 1
  • NONE 1

issue 1

  • Potential test failures with libnetcdf 4.5.0 · 7 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
544004206 https://github.com/pydata/xarray/issues/1721#issuecomment-544004206 https://api.github.com/repos/pydata/xarray/issues/1721 MDEyOklzc3VlQ29tbWVudDU0NDAwNDIwNg== stale[bot] 26384082 2019-10-18T23:27:39Z 2019-10-18T23:27:39Z NONE

In order to maintain a list of currently relevant issues, we mark issues as stale after a period of inactivity

If this issue remains relevant, please comment here or remove the stale label; otherwise it will be marked as closed automatically

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Potential test failures with libnetcdf 4.5.0 274392275
345384115 https://github.com/pydata/xarray/issues/1721#issuecomment-345384115 https://api.github.com/repos/pydata/xarray/issues/1721 MDEyOklzc3VlQ29tbWVudDM0NTM4NDExNQ== spencerkclark 6628425 2017-11-17T22:33:37Z 2017-11-17T22:33:37Z MEMBER

Thanks @shoyer, I think it's the files written by the 'scipy' engine and read by the 'netcdf4' engine. Here is a minimal example: ``` In [1]: import xarray as xr

In [2]: da = xr.DataArray([1, 2, 3], dims=['x'])

In [3]: da.to_netcdf('test_netcdf4.nc', format='NETCDF3_CLASSIC', engine='netcdf4')

In [4]: ds = xr.open_dataset('test_netcdf4.nc', engine='netcdf4')

In [5]: ds = xr.open_dataset('test_netcdf4.nc', engine='scipy')

In [6]: da.to_netcdf('test_scipy.nc', format='NETCDF3_CLASSIC', engine='scipy')

In [7]: ds = xr.open_dataset('test_scipy.nc', engine='scipy')

In [8]: ds = xr.open_dataset('test_scipy.nc', engine='netcdf4')

IOError Traceback (most recent call last) <ipython-input-8-13ddc3810e0b> in <module>() ----> 1 ds = xr.open_dataset('test_scipy.nc', engine='netcdf4')

//anaconda/envs/research/lib/python2.7/site-packages/xarray/backends/api.pyc in open_dataset(filename_or_obj, group, decode_cf, mask_and_scale, decode_times, autoclose, concat_characters, decode_coords, engine, chunks, lock, cache, drop_variables) 280 if engine == 'netcdf4': 281 store = backends.NetCDF4DataStore(filename_or_obj, group=group, --> 282 autoclose=autoclose) 283 elif engine == 'scipy': 284 store = backends.ScipyDataStore(filename_or_obj,

//anaconda/envs/research/lib/python2.7/site-packages/xarray/backends/netCDF4_.pyc in init(self, filename, mode, format, group, writer, clobber, diskless, persist, autoclose) 208 diskless=diskless, persist=persist, 209 format=format) --> 210 self.ds = opener() 211 self._autoclose = autoclose 212 self._isopen = True

//anaconda/envs/research/lib/python2.7/site-packages/xarray/backends/netCDF4_.pyc in _open_netcdf4_group(filename, mode, group, kwargs) 183 import netCDF4 as nc4 184 --> 185 ds = nc4.Dataset(filename, mode=mode, kwargs) 186 187 with close_on_error(ds):

netCDF4/_netCDF4.pyx in netCDF4._netCDF4.Dataset.init()

netCDF4/_netCDF4.pyx in netCDF4._netCDF4._ensure_nc_success()

IOError: [Errno -36] NetCDF: Invalid argument: '/Users/skc/test_scipy.nc' ``` Here's a link to the issue upstream: https://github.com/Unidata/netcdf-c/issues/657.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Potential test failures with libnetcdf 4.5.0 274392275
345363401 https://github.com/pydata/xarray/issues/1721#issuecomment-345363401 https://api.github.com/repos/pydata/xarray/issues/1721 MDEyOklzc3VlQ29tbWVudDM0NTM2MzQwMQ== shoyer 1217238 2017-11-17T20:57:56Z 2017-11-17T20:57:56Z MEMBER

I ran our test suite with libnetcdf 4.5.0 and it turned up two failures, for GenericNetCDFDataTest.test_cross_engine_read_write_netcdf3 and GenericNetCDFDataTestAutocloseTrue.test_cross_engine_read_write_netcdf3: https://travis-ci.org/shoyer/xarray/jobs/303718182

I'll have to do a little digging to turn up exactly which cross read/write cases failed. (It would probably be best to edit the test cases to use parameterized tests of some sort rather than the explicit "for" loop)

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Potential test failures with libnetcdf 4.5.0 274392275
345317906 https://github.com/pydata/xarray/issues/1721#issuecomment-345317906 https://api.github.com/repos/pydata/xarray/issues/1721 MDEyOklzc3VlQ29tbWVudDM0NTMxNzkwNg== spencerkclark 6628425 2017-11-17T18:02:29Z 2017-11-17T18:30:44Z MEMBER

@ocefpaf thanks, empirically the original did the trick, but I have edited it for correctness.

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Potential test failures with libnetcdf 4.5.0 274392275
345316396 https://github.com/pydata/xarray/issues/1721#issuecomment-345316396 https://api.github.com/repos/pydata/xarray/issues/1721 MDEyOklzc3VlQ29tbWVudDM0NTMxNjM5Ng== spencerkclark 6628425 2017-11-17T17:56:29Z 2017-11-17T18:02:18Z MEMBER

@shoyer I initially ran into that too. I think depending on the libraries you have installed (or seek to install) conda may not let you upgrade to libnetcdf 4.5.0. To get libnetcdf 4.5.0 I created a clean environment with the following specification file: name: test_xarray_libnetcdf45 channels: - conda-forge dependencies: - python=3.6 - netcdf4 - libnetcdf=4.5.0 - numpy - mock - pandas - pytest - pip - dask - scipy Then from within that environment I did an editable install of the xarray master branch and ran the test suite.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Potential test failures with libnetcdf 4.5.0 274392275
345317150 https://github.com/pydata/xarray/issues/1721#issuecomment-345317150 https://api.github.com/repos/pydata/xarray/issues/1721 MDEyOklzc3VlQ29tbWVudDM0NTMxNzE1MA== ocefpaf 950575 2017-11-17T17:59:16Z 2017-11-17T17:59:16Z CONTRIBUTOR

@spencerkclark conda-forge has netcdf4 built with both 4.5.0 and 4.4.1.1, so conda can get one or the other depending on the scenario. The only way to ensure you are building an env with libnetcdf 4.5.0 is to add it explicitly in that list.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Potential test failures with libnetcdf 4.5.0 274392275
345294520 https://github.com/pydata/xarray/issues/1721#issuecomment-345294520 https://api.github.com/repos/pydata/xarray/issues/1721 MDEyOklzc3VlQ29tbWVudDM0NTI5NDUyMA== shoyer 1217238 2017-11-17T16:36:47Z 2017-11-17T16:36:47Z MEMBER

@spencerahill how did you install libnetcdf 4.5.0? I'm still getting 4.4.1 with conda, on both the default and conda-forge channel.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Potential test failures with libnetcdf 4.5.0 274392275

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 14.324ms · About: xarray-datasette