issue_comments
where issue = 271957479 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
These facets timed out: author_association, issue
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
342677808 | https://github.com/pydata/xarray/issues/1695#issuecomment-342677808 | https://api.github.com/repos/pydata/xarray/issues/1695 | MDEyOklzc3VlQ29tbWVudDM0MjY3NzgwOA== | shoyer 1217238 | 2017-11-08T01:15:27Z | 2017-11-08T01:15:27Z | MEMBER | It would be helpful if you could test with our latest release candidate and report the output of Does this crash when you create the computation, or when you evaluate it? e.g.,
Monitoring memory usage can also be a good idea when using dask. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Diagnose groupby/groupby_bins issues 271957479 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1