home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

2 rows where issue = 256912384 and user = 1217238 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • shoyer · 2 ✖

issue 1

  • support dask arrays in rolling computations using bottleneck functions · 2 ✖

author_association 1

  • MEMBER 2
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
329286009 https://github.com/pydata/xarray/pull/1568#issuecomment-329286009 https://api.github.com/repos/pydata/xarray/issues/1568 MDEyOklzc3VlQ29tbWVudDMyOTI4NjAwOQ== shoyer 1217238 2017-09-13T20:23:16Z 2017-09-13T20:23:16Z MEMBER

Not check the version of bottleneck at all and live with some harder to predict behavior on rolling.meadian()

Sounds good to me.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  support dask arrays in rolling computations using bottleneck functions 256912384
328736801 https://github.com/pydata/xarray/pull/1568#issuecomment-328736801 https://api.github.com/repos/pydata/xarray/issues/1568 MDEyOklzc3VlQ29tbWVudDMyODczNjgwMQ== shoyer 1217238 2017-09-12T05:03:49Z 2017-09-12T05:03:49Z MEMBER

That works for me. But note that you can also use **kwargs to insert conditional keyword arguments. On Mon, Sep 11, 2017 at 10:01 PM Joe Hamman notifications@github.com wrote:

@jhamman commented on this pull request.

In xarray/core/ops.py https://github.com/pydata/xarray/pull/1568#discussion_r138251821:

  • if axis < 0:
  • axis = a.ndim + axis
  • depth = {d: 0 for d in range(a.ndim)}
  • depth[axis] = window - 1
  • boundary = {d: np.nan for d in range(a.ndim)}
  • create ghosted arrays

  • ag = da.ghost.ghost(a, depth=depth, boundary=boundary)
  • apply rolling func

  • out = ag.map_blocks(moving_func, window, min_count=min_count,
  • axis=axis, dtype=a.dtype)
  • trim array

  • result = da.ghost.trim_internal(out, depth)
  • return result + + +def dask_rolling_wrapper_without_min_count(moving_func, a, window, axis=-1):

If we update the minimum support bottleneck version to 1.1, we can do away with this special case (also present for the non-dask case) all together.

— You are receiving this because you were mentioned. Reply to this email directly, view it on GitHub https://github.com/pydata/xarray/pull/1568#discussion_r138251821, or mute the thread https://github.com/notifications/unsubscribe-auth/ABKS1gpgrbD_70fLL77G1RJClRZQbXSUks5shhANgaJpZM4PUFEa .

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  support dask arrays in rolling computations using bottleneck functions 256912384

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 230.717ms · About: xarray-datasette