issue_comments
2 rows where issue = 252358450 and user = 6628425 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Automatic parallelization for dask arrays in apply_ufunc · 2 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
330679808 | https://github.com/pydata/xarray/pull/1517#issuecomment-330679808 | https://api.github.com/repos/pydata/xarray/issues/1517 | MDEyOklzc3VlQ29tbWVudDMzMDY3OTgwOA== | spencerkclark 6628425 | 2017-09-19T21:32:00Z | 2017-09-19T21:32:00Z | MEMBER | I was not aware of dask's atop function before reading this PR (it looks pretty cool), so I defer to @nbren12 there. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Automatic parallelization for dask arrays in apply_ufunc 252358450 | |
328341717 | https://github.com/pydata/xarray/pull/1517#issuecomment-328341717 | https://api.github.com/repos/pydata/xarray/issues/1517 | MDEyOklzc3VlQ29tbWVudDMyODM0MTcxNw== | spencerkclark 6628425 | 2017-09-10T13:09:40Z | 2017-09-10T13:09:40Z | MEMBER | @nbren12 for similar use cases I've had success writing a single function that does the ghosting, applies a function with def centered_diff(da, dim, spacing=1.): def apply_centered_diff(arr, spacing=1.): if isinstance(arr, np.ndarray): return centered_diff_numpy(arr, spacing=spacing) else: axis = len(arr.shape) - 1 g = darray.ghost.ghost(arr, depth={axis: 1}, boundary={axis: 'periodic'}) result = darray.map_blocks(centered_diff_numpy, g, spacing=spacing) return darray.ghost.trim_internal(result, {axis: 1})
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Automatic parallelization for dask arrays in apply_ufunc 252358450 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1