issue_comments: 328341717
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/pull/1517#issuecomment-328341717 | https://api.github.com/repos/pydata/xarray/issues/1517 | 328341717 | MDEyOklzc3VlQ29tbWVudDMyODM0MTcxNw== | 6628425 | 2017-09-10T13:09:40Z | 2017-09-10T13:09:40Z | MEMBER | @nbren12 for similar use cases I've had success writing a single function that does the ghosting, applies a function with def centered_diff(da, dim, spacing=1.): def apply_centered_diff(arr, spacing=1.): if isinstance(arr, np.ndarray): return centered_diff_numpy(arr, spacing=spacing) else: axis = len(arr.shape) - 1 g = darray.ghost.ghost(arr, depth={axis: 1}, boundary={axis: 'periodic'}) result = darray.map_blocks(centered_diff_numpy, g, spacing=spacing) return darray.ghost.trim_internal(result, {axis: 1})
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
252358450 |