home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where issue = 198742089 and user = 3217406 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • laliberte · 3 ✖

issue 1

  • Implementing dask.array.coarsen in xarrays · 3 ✖

author_association 1

  • CONTRIBUTOR 3
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
305176003 https://github.com/pydata/xarray/issues/1192#issuecomment-305176003 https://api.github.com/repos/pydata/xarray/issues/1192 MDEyOklzc3VlQ29tbWVudDMwNTE3NjAwMw== laliberte 3217406 2017-05-31T12:45:18Z 2017-05-31T12:45:18Z CONTRIBUTOR

The reason I ask is that, ideally, coarsen would work exactly the same with dask.array and np.ndarray data. By using both serial and parallel coarsen methods from dask, we are adding a dependency but we are ensuring forward compatibility. @shoyer, what's your preference? (1) replicate serial coarsen into xarray or (2) point to dask coarsen methods?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Implementing dask.array.coarsen in xarrays 198742089
305169201 https://github.com/pydata/xarray/issues/1192#issuecomment-305169201 https://api.github.com/repos/pydata/xarray/issues/1192 MDEyOklzc3VlQ29tbWVudDMwNTE2OTIwMQ== laliberte 3217406 2017-05-31T12:00:11Z 2017-05-31T12:00:11Z CONTRIBUTOR

If it's part of dask then it would be almost trivial to implement in xarray. @mrocklin Can we assume that dask/array/chunk.py::coarsen is part of the public API?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Implementing dask.array.coarsen in xarrays 198742089
270439515 https://github.com/pydata/xarray/issues/1192#issuecomment-270439515 https://api.github.com/repos/pydata/xarray/issues/1192 MDEyOklzc3VlQ29tbWVudDI3MDQzOTUxNQ== laliberte 3217406 2017-01-04T17:59:08Z 2017-01-04T17:59:08Z CONTRIBUTOR

The dask implementation has the following API: dask.array.coarsen(reduction, x, axes, trim_excess=False) so a proposed xarray API could look like: xarray.coarsen(reduction, x, axes, chunks=None, trim_excess=False), resulting in the following implementation: 1. If the underlying data to x is dask.array, yields x.chunks(chunks).array.coarsen(reduction, axes, trim_excess) 2. Else, copy the block_reduce function.

Does that fit with the xarray API?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Implementing dask.array.coarsen in xarrays 198742089

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 16.148ms · About: xarray-datasette