issue_comments
1 row where issue = 195576963 and user = 3217406 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- User warning / more transparent _FillValue interface for .to_netcdf() · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
267094196 | https://github.com/pydata/xarray/issues/1163#issuecomment-267094196 | https://api.github.com/repos/pydata/xarray/issues/1163 | MDEyOklzc3VlQ29tbWVudDI2NzA5NDE5Ng== | laliberte 3217406 | 2016-12-14T17:13:05Z | 2016-12-14T17:13:05Z | CONTRIBUTOR | I'm pretty sure that of over many versions of CDO NaNs are not properly handled. For example, all the I have been using the I think you're right that actually putting |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
User warning / more transparent _FillValue interface for .to_netcdf() 195576963 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1