issue_comments
2 rows where issue = 1613054013 and user = 127195910 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Plotting with time-zone-aware pd.Timestamp axis not possible · 2 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1460894580 | https://github.com/pydata/xarray/issues/7593#issuecomment-1460894580 | https://api.github.com/repos/pydata/xarray/issues/7593 | IC_kwDOAMm_X85XE3t0 | Karimat22 127195910 | 2023-03-08T21:23:08Z | 2023-05-06T03:24:36Z | NONE | If you are encountering an error message that says "Plotting with time-zone-aware pd.Timestamp axis not possible", it means that you are trying to plot a Pandas DataFrame or Series that has a time-zone-aware pd.Timestamp axis using a plotting library that does not support time zones. To fix this error, you can convert the time-zone-aware pd.Timestamp axis to a time-zone-naive datetime object. This can be done using the tz_localize() method to set the time zone, followed by the tz_convert() method to convert to a new time zone or remove the time zone information altogether. Here is an example: import pandas as pd import matplotlib.pyplot as plt Create a time-series DataFrame with a time-zone-aware pd.Timestamp axisdata = pd.DataFrame({'value': [1, 2, 3, 4]}, index=pd.date_range('2022-03-01 00:00:00', periods=4, freq='H', tz='US/Eastern')) Convert the time-zone-aware pd.Timestamp axis to a time-zone-naive datetime objectdata.index = data.index.tz_localize(None) Plot the DataFrame using Matplotlibdata.plot() plt.show() In this example, we create a time-series DataFrame with a time-zone-aware pd.Timestamp axis using the pd.date_range() function with the tz parameter set to 'US/Eastern'. We then use the tz_localize() method to set the time zone to None to convert the axis to a time-zone-naive datetime object. Finally, we plot the DataFrame using Matplotlib and the plot() method. Note that converting the time-zone-aware pd.Timestamp axis to a time-zone-naive datetime object means that the time zone information is lost, so make sure that this is acceptable for your use case before making this conversion. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Plotting with time-zone-aware pd.Timestamp axis not possible 1613054013 | |
| 1460461197 | https://github.com/pydata/xarray/issues/7593#issuecomment-1460461197 | https://api.github.com/repos/pydata/xarray/issues/7593 | IC_kwDOAMm_X85XDN6N | Karimat22 127195910 | 2023-03-08T16:30:06Z | 2023-03-08T21:24:09Z | NONE | {
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Plotting with time-zone-aware pd.Timestamp axis not possible 1613054013 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1