issue_comments
3 rows where issue = 1563270549 and user = 5179430 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- Update contains_cftime_datetimes to avoid loading entire variable array · 3 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1458453929 | https://github.com/pydata/xarray/pull/7494#issuecomment-1458453929 | https://api.github.com/repos/pydata/xarray/issues/7494 | IC_kwDOAMm_X85W7j2p | agoodm 5179430 | 2023-03-07T16:22:21Z | 2023-03-07T16:22:21Z | CONTRIBUTOR | Thanks @Illviljan and @dcherian for helping to see this through. |
{
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Update contains_cftime_datetimes to avoid loading entire variable array 1563270549 | |
| 1411206291 | https://github.com/pydata/xarray/pull/7494#issuecomment-1411206291 | https://api.github.com/repos/pydata/xarray/issues/7494 | IC_kwDOAMm_X85UHUyT | agoodm 5179430 | 2023-01-31T23:17:38Z | 2023-01-31T23:17:38Z | CONTRIBUTOR | @Illviljan I gave your update a quick test, it seems to work well enough and still maintains the performance improvement. It looks fine to me though I guess it looks like you still need to fix this failing mypy stuff now? |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Update contains_cftime_datetimes to avoid loading entire variable array 1563270549 | |
| 1410253782 | https://github.com/pydata/xarray/pull/7494#issuecomment-1410253782 | https://api.github.com/repos/pydata/xarray/issues/7494 | IC_kwDOAMm_X85UDsPW | agoodm 5179430 | 2023-01-31T12:22:02Z | 2023-01-31T12:26:37Z | CONTRIBUTOR |
This isn't actually the line of code that's causing the performance bottleneck, it's the access to ```python import numpy as np import xarray as xr str_array = np.arange(100000000).astype(str) ds = xr.DataArray(dims=('x',), data=str_array).to_dataset(name='str_array') ds = ds.chunk(x=10000) ds['str_array'] = ds.str_array.astype('O') # Needs to actually be object dtype to show the problem ds.to_zarr('str_array.zarr') %time xr.open_zarr('str_array.zarr') ``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Update contains_cftime_datetimes to avoid loading entire variable array 1563270549 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1