issue_comments: 1410253782
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/pull/7494#issuecomment-1410253782 | https://api.github.com/repos/pydata/xarray/issues/7494 | 1410253782 | IC_kwDOAMm_X85UDsPW | 5179430 | 2023-01-31T12:22:02Z | 2023-01-31T12:26:37Z | CONTRIBUTOR |
This isn't actually the line of code that's causing the performance bottleneck, it's the access to ```python import numpy as np import xarray as xr str_array = np.arange(100000000).astype(str) ds = xr.DataArray(dims=('x',), data=str_array).to_dataset(name='str_array') ds = ds.chunk(x=10000) ds['str_array'] = ds.str_array.astype('O') # Needs to actually be object dtype to show the problem ds.to_zarr('str_array.zarr') %time xr.open_zarr('str_array.zarr') ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
1563270549 |