home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where issue = 146975644 and user = 1217238 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date)

user 1

  • shoyer · 3 ✖

issue 1

  • value scaling wrong in special cases · 3 ✖

author_association 1

  • MEMBER 3
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
208706109 https://github.com/pydata/xarray/issues/822#issuecomment-208706109 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDIwODcwNjEwOQ== shoyer 1217238 2016-04-12T04:57:47Z 2016-04-12T04:57:47Z MEMBER

@forman Just a note -- if h5py can read the data correctly, you can read the data into xarray using h5netcdf (with engine='h5netcdf' in open_dataset).

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644
208088579 https://github.com/pydata/xarray/issues/822#issuecomment-208088579 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDIwODA4ODU3OQ== shoyer 1217238 2016-04-10T23:14:50Z 2016-04-10T23:14:50Z MEMBER

I just opened this up with decode_cf=False. Here's what the raw data looks like:

ds.analysed_sst[0].plot.imshow()

with attributes:

Attributes: _FillValue: -32768 units: kelvin scale_factor: 0.01 add_offset: 273.15 long_name: analysed sea surface temperature valid_min: -300 valid_max: 4500 standard_name: sea_water_temperature depth: 20 cm source: ATSR<1,2>-ESACCI-L3U-v1.0, AATSR-ESACCI-L3U-v1.0, AVHRR<12,14,15,16,17,18>_G-ESACCI-L2P-v1.0, AVHRRMTA-ESACCI-L2P-v1.0 comment: SST analysis produced for ESA SST CCI project using the OSTIA system in reanalysis mode.

To me, It looks like somebody just mis-prepared this dataset, given the smooth transitions in the ocean from dark red to dark blue, which would correspond to numeric overflow. If not, there are lots of places in the ocean where the temperature is in negative degrees Kelvin.

I don't have a strong opinion on whether or not we should automatically masking values outside valid_min/valid_max.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644
207552831 https://github.com/pydata/xarray/issues/822#issuecomment-207552831 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDIwNzU1MjgzMQ== shoyer 1217238 2016-04-08T18:46:49Z 2016-04-08T18:46:49Z MEMBER

So we actually use our own value scaling logic, independent of netCDF4. It's interesting that we have the same issue, though!

Possibly it's because we don't use the valid_min/valid_max arguments in determining what should be masked? I can download your dataset later and take a more in depth look.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 1518.323ms · About: xarray-datasette