home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

13 rows where issue = 146975644 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 6

  • forman 4
  • shoyer 3
  • fmaussion 3
  • rabernat 1
  • dcherian 1
  • stale[bot] 1

author_association 2

  • MEMBER 8
  • NONE 5

issue 1

  • value scaling wrong in special cases · 13 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
464950816 https://github.com/pydata/xarray/issues/822#issuecomment-464950816 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDQ2NDk1MDgxNg== dcherian 2448579 2019-02-19T02:11:31Z 2019-02-19T02:11:31Z MEMBER

Fixed upstream.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644
458132212 https://github.com/pydata/xarray/issues/822#issuecomment-458132212 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDQ1ODEzMjIxMg== stale[bot] 26384082 2019-01-28T13:29:44Z 2019-01-28T13:29:44Z NONE

In order to maintain a list of currently relevant issues, we mark issues as stale after a period of inactivity If this issue remains relevant, please comment here; otherwise it will be marked as closed automatically

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644
208719528 https://github.com/pydata/xarray/issues/822#issuecomment-208719528 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDIwODcxOTUyOA== forman 206773 2016-04-12T05:54:43Z 2016-04-12T05:54:43Z NONE

Fantastic, thanks!

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644
208706109 https://github.com/pydata/xarray/issues/822#issuecomment-208706109 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDIwODcwNjEwOQ== shoyer 1217238 2016-04-12T04:57:47Z 2016-04-12T04:57:47Z MEMBER

@forman Just a note -- if h5py can read the data correctly, you can read the data into xarray using h5netcdf (with engine='h5netcdf' in open_dataset).

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644
208339095 https://github.com/pydata/xarray/issues/822#issuecomment-208339095 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDIwODMzOTA5NQ== forman 206773 2016-04-11T13:21:25Z 2016-04-11T13:21:25Z NONE

With h5py the data is read correctly too.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644
208243175 https://github.com/pydata/xarray/issues/822#issuecomment-208243175 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDIwODI0MzE3NQ== forman 206773 2016-04-11T09:10:41Z 2016-04-11T09:10:41Z NONE

Ok, I'll submit a netCDF issue then.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644
208214490 https://github.com/pydata/xarray/issues/822#issuecomment-208214490 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDIwODIxNDQ5MA== forman 206773 2016-04-11T08:02:30Z 2016-04-11T09:08:34Z NONE

Just found that the valid_min/valid_max attributes are not directly part of the CF convention but the NUG convention and applying to byte only according to CF Section 2.2 Data Types

All integer types are treated by the netCDF interface as signed. It is possible to treat the byte type as unsigned by using the NUG convention of indicating the unsigned range using the valid_min, valid_max, or valid_range attributes.

As for for #821, Panoply shows the correct values for the same file:

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644
208237051 https://github.com/pydata/xarray/issues/822#issuecomment-208237051 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDIwODIzNzA1MQ== fmaussion 10050469 2016-04-11T08:53:43Z 2016-04-11T08:54:20Z MEMBER

Note that ncview also displays the output correctly.

It seems that the problem occurs at the necdf4 level already:

python import netCDF4 import matplotlib.pyplot as plt f = '/home/mowglie/Downloads/20100101120000-ESACCI-L4_GHRSST-SSTdepth-OSTIA-GLOB_LT-v02.0-fv01.1.nc' d = netCDF4.Dataset(f) v = d['analysed_sst'] v.set_auto_maskandscale(False) plt.imshow(v[0, ...], origin='lower') plt.show()

To be compared to the equivalent output from IDL at the netcdf backend level:

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644
208088579 https://github.com/pydata/xarray/issues/822#issuecomment-208088579 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDIwODA4ODU3OQ== shoyer 1217238 2016-04-10T23:14:50Z 2016-04-10T23:14:50Z MEMBER

I just opened this up with decode_cf=False. Here's what the raw data looks like:

ds.analysed_sst[0].plot.imshow()

with attributes:

Attributes: _FillValue: -32768 units: kelvin scale_factor: 0.01 add_offset: 273.15 long_name: analysed sea surface temperature valid_min: -300 valid_max: 4500 standard_name: sea_water_temperature depth: 20 cm source: ATSR<1,2>-ESACCI-L3U-v1.0, AATSR-ESACCI-L3U-v1.0, AVHRR<12,14,15,16,17,18>_G-ESACCI-L2P-v1.0, AVHRRMTA-ESACCI-L2P-v1.0 comment: SST analysis produced for ESA SST CCI project using the OSTIA system in reanalysis mode.

To me, It looks like somebody just mis-prepared this dataset, given the smooth transitions in the ocean from dark red to dark blue, which would correspond to numeric overflow. If not, there are lots of places in the ocean where the temperature is in negative degrees Kelvin.

I don't have a strong opinion on whether or not we should automatically masking values outside valid_min/valid_max.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644
207552831 https://github.com/pydata/xarray/issues/822#issuecomment-207552831 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDIwNzU1MjgzMQ== shoyer 1217238 2016-04-08T18:46:49Z 2016-04-08T18:46:49Z MEMBER

So we actually use our own value scaling logic, independent of netCDF4. It's interesting that we have the same issue, though!

Possibly it's because we don't use the valid_min/valid_max arguments in determining what should be masked? I can download your dataset later and take a more in depth look.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644
207510870 https://github.com/pydata/xarray/issues/822#issuecomment-207510870 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDIwNzUxMDg3MA== fmaussion 10050469 2016-04-08T16:51:25Z 2016-04-08T16:51:25Z MEMBER

For what its worth, I've tested your file with my IDL library, and I get:

IDL> print, min(data), max(data) -54.5300 306.440 IDL> print, TIME_to_STR(time) 01.01.2010 12:00:00

you should fill a report in netcdf4 as @rabernat suggests.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644
207510306 https://github.com/pydata/xarray/issues/822#issuecomment-207510306 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDIwNzUxMDMwNg== rabernat 1197350 2016-04-08T16:50:22Z 2016-04-08T16:50:22Z MEMBER

@fmaussion then it's a netCDF bug https://github.com/Unidata/netcdf4-python/issues

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644
207508190 https://github.com/pydata/xarray/issues/822#issuecomment-207508190 https://api.github.com/repos/pydata/xarray/issues/822 MDEyOklzc3VlQ29tbWVudDIwNzUwODE5MA== fmaussion 10050469 2016-04-08T16:43:47Z 2016-04-08T16:43:47Z MEMBER

It seems that the problem is happening at the NetCDF4 level already:

``` python import netCDF4 import numpy as np

f = '/home/mowglie/Downloads/20100101120000-ESACCI-L4_GHRSST-SSTdepth-OSTIA-GLOB_LT-v02.0-fv01.1.nc' d = netCDF4.Dataset(f) da = d['analysed_sst'][:] print(np.max(da), np.min(da)) print(netCDF4.num2date(d['time'][:], d['time'].units)) ```

prints

600.82 -54.53 [datetime.datetime(1947, 5, 12, 9, 58, 14)]

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  value scaling wrong in special cases 146975644

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 16.637ms · About: xarray-datasette