home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

1 row where issue = 146287030 and user = 206773 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • forman · 1 ✖

issue 1

  • N-D rolling · 1 ✖

author_association 1

  • NONE 1
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
206429373 https://github.com/pydata/xarray/issues/819#issuecomment-206429373 https://api.github.com/repos/pydata/xarray/issues/819 MDEyOklzc3VlQ29tbWVudDIwNjQyOTM3Mw== forman 206773 2016-04-06T15:29:27Z 2016-04-06T15:29:27Z NONE

Thanks for the prompt reply!

Once we have decided to use xarray for our project(s) and once we familiarized with its internals, we'll be happy to contribute and support you! Currently we all feel a bit dizzy about the many options we have and how to decide which way to go: Create our own library using xarray or build on UK MetOffice's Iris, Apache OCW, or Max-Planck-Institute's CDO, etc.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  N-D rolling 146287030

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 480.04ms · About: xarray-datasette