issue_comments
1 row where issue = 146287030 and user = 206773 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- N-D rolling · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
206429373 | https://github.com/pydata/xarray/issues/819#issuecomment-206429373 | https://api.github.com/repos/pydata/xarray/issues/819 | MDEyOklzc3VlQ29tbWVudDIwNjQyOTM3Mw== | forman 206773 | 2016-04-06T15:29:27Z | 2016-04-06T15:29:27Z | NONE | Thanks for the prompt reply! Once we have decided to use xarray for our project(s) and once we familiarized with its internals, we'll be happy to contribute and support you! Currently we all feel a bit dizzy about the many options we have and how to decide which way to go: Create our own library using xarray or build on UK MetOffice's Iris, Apache OCW, or Max-Planck-Institute's CDO, etc. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
N-D rolling 146287030 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1