home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

2 rows where author_association = "NONE" and user = 7217358 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

issue 2

  • Anyone working on a to_tiff? Alternatively, how do you write an xarray to a geotiff? 1
  • stacked_xarray.groupby('lat','lon').apply(func) over 3D array takes too long 1

user 1

  • alexsalr · 2 ✖

author_association 1

  • NONE · 2 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
456960684 https://github.com/pydata/xarray/issues/2042#issuecomment-456960684 https://api.github.com/repos/pydata/xarray/issues/2042 MDEyOklzc3VlQ29tbWVudDQ1Njk2MDY4NA== alexsalr 7217358 2019-01-23T20:49:40Z 2019-01-23T21:07:43Z NONE

Hi @guillaumeeb https://github.com/guillaumeeb ,

I have also created geotiff files from xarray using rasterio. I was working in with a a to_tiff method adapted to my workflow ( https://github.com/alexsalr/ciat_monitor_crops/blob/master/b_Temporal_Stack/xr_eotemp.py ), based in these methods https://github.com/robintw/XArrayAndRasterio. This was with rasterio prior to 1.0, so I don't know if the new version changes the behaviour.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Anyone working on a to_tiff? Alternatively, how do you write an xarray to a geotiff?  312203596
400800345 https://github.com/pydata/xarray/issues/2249#issuecomment-400800345 https://api.github.com/repos/pydata/xarray/issues/2249 MDEyOklzc3VlQ29tbWVudDQwMDgwMDM0NQ== alexsalr 7217358 2018-06-27T19:25:10Z 2018-06-27T19:38:46Z NONE

I was trying to apply the same groupby('lat','long').apply() strategy for interpolating time series of optical remote sensing images. With @shoyer 's suggestions I managed to apply and paralellize a ufunc, which was significantly faster than operating by pixels. However I am still looking for a way to optimize the spline fitting and evaluation (maybe numba, as suggested). Any other suggestions would be appreciated.

Im working with dask arrays, and my data looks like this:

<xarray.DataArray (time: 8, y: 1000, x: 1000) dask.array<shape=(8, 1000, 1000), dtype=float32, chunksize=(8, 100, 100)> <Coordinates: < * time (time) datetime64[ns] 2015-12-11 2015-12-21 2015-12-31 ... < * x (x) float64 4.989e+05 4.989e+05 4.989e+05 4.989e+05 4.989e+05 ... < * y (y) float64 4.385e+05 4.384e+05 4.384e+05 4.384e+05 4.384e+05 ... < mask (time, y, x) int8 dask.array<shape=(8, 1000, 1000), chunksize=(8, 100, 100)>

def interpolate_band(da, int_dates): # Apply ufunc-- inputs xr.DataArray and dates for interpolation # returns data array with interpolated values for int_dates result = xr.apply_ufunc(ufunc_cubic_spline, da, input_core_dims=[['time']], output_core_dims=[['ntime']], kwargs={'axis': -1, 'orig_times': da.time.values, 'new_times': int_dates}, dask='parallelized', output_dtypes=[np.float32], output_sizes={'ntime':int_dates.shape[0]}) result['ntime'] = ('ntime', int_time) return result

def ufunc_cubic_spline(a, axis, orig_times, new_times): # Reshape array to 2d (pixels, dates) data = a.reshape(axis, a.shape[axis]) # Fit cubic spline and interpolate dates results = np.apply_along_axis(_cubic_spline, 1, data, orig_times=orig_times, new_times=new_times) # Reshape to original pixels (y,x) and number of interpolated dates return results.reshape((a.shape[0],a.shape[1],new_times.shape[0])) for the interpolation I'm using numpy's CubicSpline

``` def _cubic_spline(y, orig_times, new_times): # Filter NaNs nans = np.isnan(y)#.values)[:,0] # Try to fit cubic spline with filtered y values try: spl = interpolate.CubicSpline(orig_times.astype('d')[~nans], y[~nans])

    interpolated = spl(new_times.astype('d'))

except ValueError:
    ## When spline cannot be fitted(not enought data), return NaN
    ## TODO raise warning
    interpolated = np.empty(new_times.shape[0])
    interpolated[:] = np.nan

return interpolated

```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  stacked_xarray.groupby('lat','lon').apply(func) over 3D array takes too long 335523891

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 12.146ms · About: xarray-datasette